NOT MEASUREMENT SENSITIVE

MIL-HDBK-17-2F Volume 2 of 5 <u>17 JUNE 2002</u>

SUPERSEDING MIL-HDBK-17-2E Volume 2 of 5 24 MAY 1999

DEPARTMENT OF DEFENSE HANDBOOK

COMPOSITE MATERIALS HANDBOOK

VOLUME 2. POLYMER MATRIX COMPOSITES MATERIALS PROPERTIES

This handbook is for guidance only. Do not cite this document as a requirement.

AMSC N/A

AREA CMPS

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

FOREWORD

- 1. This Composite Materials Handbook Series, MIL-HDBK-17, are approved for use by all Departments and Agencies of the Department of Defense.
- 2. This handbook is for guidance only. This handbook cannot be cited as a requirement. If it is, the contractor does not have to comply. This mandate is a DoD requirement only; it is not applicable to the Federal Aviation Administration (FAA) or other government agencies.
- Every effort has been made to reflect the latest information on polymer (organic), metal, and ceramic composites. The handbook is continually reviewed and revised to ensure its completeness and currentness. Documentation for the secretariat should be directed to: Materials Sciences Corporation, MIL-HDBK-17 Secretariat, 500 Office Center Drive, Suite 250, Fort Washington, PA 19034.
- 4. MIL-HDBK-17 provides guidelines and material properties for polymer (organic), metal, and ceramic matrix composite materials. The first three volumes of this handbook currently focus on, but are not limited to, polymeric composites intended for aircraft and aerospace vehicles. Metal matrix composites (MMC) and ceramic matrix composites (CMC), including carbon-carbon composites (C-C) are covered in Volume 4 and Volume 5, respectively.
- 5. This standardization handbook has been developed and is being maintained as a joint effort of the Department of Defense and the Federal Aviation Administration.
- 6. The information contained in this handbook was obtained from materials producers, industry, reports on Government sponsored research, the open literature, and by contact with research laboratories and those who participate in the MIL-HDBK-17 coordination activity.
- 7. All information and data contained in this handbook have been coordinated with industry and the U.S. Army, Navy, Air Force, NASA, and Federal Aviation Administration prior to publication.
- 8. Copies of this document and revisions thereto may be obtained from the Document Automation and Production Service (DAPS), Bldg. 4D, (DODSSP/ASSIST), 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.
- Beneficial comments (recommendations, additions, deletions) and any pertinent data which may be of use in improving this document should be addressed to: U.S. Army Research Laboratory, Weapons and Materials Research Directorate, ATTN: AMSRL-WM-MA, Aberdeen Proving Ground, MD 21005-5069, by using the Standardization Document Improvement Proposal (DD Form 1426) appearing at the end of this document or by letter.

ACKNOWLEDGEMENT

The services necessary for the development and maintenance of the Composite Materials Handbook (MIL-HDBK-17) are provided by the handbook Secretariat, Materials Sciences Corporation. This work is performed under contract with the US Army Research Laboratory (Contract Number DAAL01-97-C-0140).

The primary source of funding for the current contract is the Federal Aviation Administration. Other sources include NASA, Army, Department of Energy, and Air Force. Volunteer committee members from government, industry, and academia coordinate and review all the information provided in this handbook. The time and effort of the volunteers and the support of their respective departments, companies, and universities make it possible to insure completeness, accuracy, and state-of-the-art composite technology.

PARAG	RAPH	PAGE
FOREV	VORD	ii
Summa	ary of Changes	xi
СНАРТ	ER 1 GENERAL INFORMATION	
1.1	INTRODUCTION	1
1.2	PURPOSE AND SCOPE OF VOLUME 2	
1.3	ORGANIZATION OF DATA IN HANDBOOK	
	1.3.1 Fiber properties	
	1.3.2 Matrix properties	
	1.3.3 Composite properties	
1.4	PRESENTATION OF DATA	
	1.4.1 Data set description	
	1.4.2 Summary tables	
	1.4.3 Individual data tables - normalized data	11
	1.4.4 Individual data tables - unnormalized data	
	1.4.5 Individual data tables - notched laminate data	
	1.4.6 Individual data tables - bearing data	
	1.4.7 Individual data tables - bearing/bypass data	
1.5	MATERIALS SYSTEMS	
	1.5.1 Materials system codes	
	1.5.2 Index of materials	
1.6	MATERIAL ORIENTATION CODES	
	1.6.1 Laminate orientation codes	
	1.6.2 Braiding orientation codes	
1.7	SYMBOLS, ABBREVIATIONS, AND SYSTEMS OF UNITS	
	1.7.1 Symbols and abbreviations	
	1.7.1.1 Constituent properties	
	1.7.1.2 Laminae and laminates	
	1.7.1.3 Subscripts	
	1.7.1.4 Superscripts	
	1.7.1.5 Acronyms	
	1.7.2 System of units	
1.8		
REF	ERENCES	55
СНАРТ	ER 2 FIBER PROPERTIES	
-		
2.1	INTRODUCTION	
2.2	CARBON FIBERS	
2.3	ARAMID FIBERS	
2.4	GLASS FIBERS	
2.5	BORON FIBERS	
2.6	ALUMINA FIBERS	
2.7	SILICON CARBIDE FIBERS	
2.8	QUARTZ FIBERS	

PARAG	RAPH		PAGE
СНАРТ		MATRIX PROPERTIES	
CHAPI	ER 3	MATRIX PROPERTIES	1
3.1	INTR	ODUCTION	1
3.2	EPO)	KIES	1
-	3.2.1	General Characteristics	
	3.2.2	Index of Supplies, Designations, and Abbreviations	
3.3		ESTERS	
3.4		VOLICS	
3.5	SILIC	ONES	1
3.6		ALEIMIDES	
3.7		BENZIMIDAZOLES	
3.8		/IMIDES, THERMOSET	
3.9	POLY	ETHERETHERKETONES	1
3.10		PHENYLENE SULFIDES	
3.11	POLY	/ETHERIMIDES	1
3.12	POLY	/SULFONES	1
3.13	POLY	AMIDE-IMIDES	1
3.14	POLY	/IMIDES, THERMOPLASTICS	1
		CARBON FIBER COMPOSITES	
СНАРТ	ER 4	CARBON FIBER COMPOSITES	1
4.1		ODUCTION	
4.2	CARE	BON - EPOXY COMPOSITES	1
	4.2.1	T-500 12k/976 unidirectional tape	
	4.2.2	HITEX 33 6k/E7K8 unidirectional tape	6
	4.2.3	AS4 12k/E7K8 unidirectional tape	15
	4.2.4	Celion 12k/E7K8 unidirectional tape	24
	4.2.5	AS4 12k/938 unidirectional tape	
	4.2.6	T-300 3k/934 plain weave fabric	
	4.2.7	Celion 12k/938 unidirectional tape	53
	4.2.8	AS4 12k/3502 unidirectional tape	63
	4.2.9	Celion 3000/E7K8 plain weave fabric	
	4.2.10	HITEX 33 6k/E7K8 plain weave fabric	
	4.2.11	AS4 3k/E7K8 plain weave fabric	. 105
		AS4/3501-6 (bleed) unidirectional tape	
		AS4/3501-6 (no bleed) unidirectional tape	
		AS4 3k/3501-6 plain weave fabric	
		AS4 3k/3501-6S 5-harness satin weave fabric	
	4.2.16	AS4 6k/3502-6S 5-harness satin weave fabric	. 144
	4.2.17	T-300 15k/976 unidirectional tape	. 152
		IM7 12k/8551-7A unidirectional tape	
		AS4 3k/3501-6 5-harness satin weave fabric	
	-	AS4 3k/3501-6 5-harness satin weave fabric	-
		IM6 3501-6 unidirectional tape	
		IM7 12k/8552 unidirectional tape	
		T300 3k/977-2 plain weave fabric	
		T-300 3k/977-2 8-harness satin weave fabric	
	4.2.25	IM7 12k/977-2 unidirectional tape	. 181
		AS4 6k/PR500 5-harness satin weave fabric	
		T300 3k/EA9396 8-harness satin weave fabric	
		AS4 12k/997 unidirectional tape	
	4.2.29	T650-35 12k/976 unidirectional tape	. 227

PARAGRAPH

PAGE

	4.2.30 IM7 12k/PR381 unidirectional tape2	235
	4.2.31 IM7 6k/PR500 4-harness satin weave fabric	235
	4.2.32 T650-35 3k/976 8-harness satin weave fabric	235
	4.2.33 T700S 12k/3900-2 plain weave fabric	
	4.2.34 T800HB 12k/3900-2 unidirectional tape	
	4.2.35 T650-35 3k/976 plain weave fabric	
4.3	CARBON - POLYESTER COMPOSITES	
4.3	CARBON - POLTESTER COMPOSITES	
4.4		
	4.4.1 T-300 3k/F650 unidirectional tape	
	4.4.2 T-300 3k/F650 8-harness satin weave fabric	
	4.4.3 T-300 3k/F652 8-harness satin weave fabric	
	4.4.4 AS4/5250-3 unidirectional tape	
	4.4.5 IM7 6k/5250-4 RTM 4-harness satin weave fabric	
	4.4.6 T650-35 3k/5250-4 8-harness satin weave fabric	
	4.4.7 T650-35 3k/5250-4 plain weave fabric	
4.5	CARBON - POLYIMIDE COMPOSITES	
	4.5.1 Celion 3000/F670 8-harness satin weave fabric	293
4.6	CARBON - PHENOLIC COMPOSITES	302
4.7	CARBON - SILICONE COMPOSITES	302
4.8	CARBON - POLYBENZIMIDAZOLE COMPOSITES	302
4.9	CARBON - PEEK COMPOSITES	
	4.9.1 IM6 12k/APC-2 unidirectional tape	
4 1(CARBON – CYANATE ESTER COMPOSITES	
	4.10.1 M55J 6k/954-3 unidirectional tape	
REI	FERENCES	
		20
СНАР	TER 5 ARAMID FIBER COMPOSITES	1
-		
5.1	INTRODUCTION	1
5.1 5.2	INTRODUCTION ARAMID - EPOXY COMPOSITES	1 1
5.1 5.2 5.3	INTRODUCTION ARAMID - EPOXY COMPOSITES ARAMID - POLYESTER COMPOSITES	1 1 1
5.1 5.2 5.3 5.4	INTRODUCTION ARAMID - EPOXY COMPOSITES ARAMID - POLYESTER COMPOSITES ARAMID - BISMALEIMIDE COMPOSITES	1 1 1 1
5.1 5.2 5.3 5.4 5.5	INTRODUCTION ARAMID - EPOXY COMPOSITES ARAMID - POLYESTER COMPOSITES ARAMID - BISMALEIMIDE COMPOSITES ARAMID - POLYIMIDE COMPOSITES	1 1 1 1 1
5.1 5.2 5.3 5.4 5.5 5.6	INTRODUCTION ARAMID - EPOXY COMPOSITES ARAMID - POLYESTER COMPOSITES ARAMID - BISMALEIMIDE COMPOSITES ARAMID - POLYIMIDE COMPOSITES ARAMID - PHENOLIC COMPOSITES	1 1 1 1 1 1
5.1 5.2 5.3 5.4 5.5 5.6 5.7	INTRODUCTION ARAMID - EPOXY COMPOSITES ARAMID - POLYESTER COMPOSITES ARAMID - BISMALEIMIDE COMPOSITES ARAMID - POLYIMIDE COMPOSITES ARAMID - PHENOLIC COMPOSITES ARAMID - SILICON COMPOSITES	1 1 1 1 1 1
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8	INTRODUCTION ARAMID - EPOXY COMPOSITES ARAMID - POLYESTER COMPOSITES ARAMID - BISMALEIMIDE COMPOSITES ARAMID - POLYIMIDE COMPOSITES ARAMID - PHENOLIC COMPOSITES ARAMID - SILICON COMPOSITES ARAMID - SULICON COMPOSITES	1 1 1 1 1 1 1
5.1 5.2 5.3 5.4 5.5 5.6 5.7	INTRODUCTION ARAMID - EPOXY COMPOSITES ARAMID - POLYESTER COMPOSITES ARAMID - BISMALEIMIDE COMPOSITES ARAMID - POLYIMIDE COMPOSITES ARAMID - PHENOLIC COMPOSITES ARAMID - SILICON COMPOSITES	1 1 1 1 1 1 1
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9	INTRODUCTION ARAMID - EPOXY COMPOSITES ARAMID - POLYESTER COMPOSITES ARAMID - BISMALEIMIDE COMPOSITES ARAMID - POLYIMIDE COMPOSITES ARAMID - PHENOLIC COMPOSITES ARAMID - SILICON COMPOSITES ARAMID - SILICON COMPOSITES ARAMID - POLYBENZIMIDAZOLE COMPOSITES ARAMID - PEEK COMPOSITES	1 1 1 1 1 1 1
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9	INTRODUCTION ARAMID - EPOXY COMPOSITES ARAMID - POLYESTER COMPOSITES ARAMID - BISMALEIMIDE COMPOSITES ARAMID - POLYIMIDE COMPOSITES ARAMID - PHENOLIC COMPOSITES ARAMID - SILICON COMPOSITES ARAMID - SULICON COMPOSITES	1 1 1 1 1 1 1
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 CHAP	INTRODUCTION ARAMID - EPOXY COMPOSITES ARAMID - POLYESTER COMPOSITES ARAMID - BISMALEIMIDE COMPOSITES ARAMID - POLYIMIDE COMPOSITES ARAMID - PHENOLIC COMPOSITES ARAMID - SILICON COMPOSITES ARAMID - SILICON COMPOSITES ARAMID - POLYBENZIMIDAZOLE COMPOSITES ARAMID - PEEK COMPOSITES	1 1 1 1 1 1 1 1
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 CHAP	INTRODUCTION ARAMID - EPOXY COMPOSITES ARAMID - POLYESTER COMPOSITES ARAMID - BISMALEIMIDE COMPOSITES ARAMID - POLYIMIDE COMPOSITES ARAMID - PHENOLIC COMPOSITES ARAMID - SILICON COMPOSITES ARAMID - POLYBENZIMIDAZOLE COMPOSITES ARAMID - POLYBENZIMIDAZOLE COMPOSITES INTRODUCTION	1 1 1 1 1 1 1 1
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 CHAP	INTRODUCTION ARAMID - EPOXY COMPOSITES ARAMID - POLYESTER COMPOSITES ARAMID - BISMALEIMIDE COMPOSITES ARAMID - POLYIMIDE COMPOSITES ARAMID - PHENOLIC COMPOSITES ARAMID - SILICON COMPOSITES ARAMID - POLYBENZIMIDAZOLE COMPOSITES ARAMID - PEEK COMPOSITES INTRODUCTION GLASS FIBER COMPOSITES	1 1 1 1 1 1 1 1
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 CHAP	INTRODUCTION ARAMID - EPOXY COMPOSITES ARAMID - POLYESTER COMPOSITES ARAMID - BISMALEIMIDE COMPOSITES. ARAMID - POLYIMIDE COMPOSITES ARAMID - PHENOLIC COMPOSITES ARAMID - SILICON COMPOSITES ARAMID - POLYBENZIMIDAZOLE COMPOSITES ARAMID - PEEK COMPOSITES INTRODUCTION GLASS FIBER COMPOSITES 6.2.1 S2-449 43k/SP381 unidirectional tape	1 1 1 1 1 1 1 1
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 CHAP	INTRODUCTION ARAMID - EPOXY COMPOSITES ARAMID - POLYESTER COMPOSITES ARAMID - BISMALEIMIDE COMPOSITES ARAMID - POLYIMIDE COMPOSITES ARAMID - PHENOLIC COMPOSITES ARAMID - SILICON COMPOSITES ARAMID - POLYBENZIMIDAZOLE COMPOSITES ARAMID - PEEK COMPOSITES INTRODUCTION GLASS FIBER COMPOSITES 6.2.1 S2-449 43k/SP381 unidirectional tape	1 1 1 1 1 1 1 1
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 CHAP	INTRODUCTION. ARAMID - EPOXY COMPOSITES. ARAMID - POLYESTER COMPOSITES. ARAMID - BISMALEIMIDE COMPOSITES. ARAMID - POLYIMIDE COMPOSITES. ARAMID - PHENOLIC COMPOSITES. ARAMID - SILICON COMPOSITES. ARAMID - POLYBENZIMIDAZOLE COMPOSITES. ARAMID - PEEK COMPOSITES. TER 6 GLASS FIBER COMPOSITES . INTRODUCTION. GLASS\EPOXY COMPOSITES. 6.2.1 S2-449 43k/SP381 unidirectional tape	1 1 1 1 1 1 1 1
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 CHAP	INTRODUCTION. ARAMID - EPOXY COMPOSITES. ARAMID - POLYESTER COMPOSITES. ARAMID - BISMALEIMIDE COMPOSITES. ARAMID - POLYIMIDE COMPOSITES. ARAMID - PHENOLIC COMPOSITES. ARAMID - SILICON COMPOSITES. ARAMID - POLYBENZIMIDAZOLE COMPOSITES. ARAMID - PEEK COMPOSITES. TER 6 GLASS FIBER COMPOSITES . INTRODUCTION. GLASS\EPOXY COMPOSITES. 6.2.1 S2-449 43k/SP381 unidirectional tape	1 1 1 1 1 1 1 1
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 CHAP 6.1 6.2	INTRODUCTION ARAMID - EPOXY COMPOSITES ARAMID - POLYESTER COMPOSITES. ARAMID - BISMALEIMIDE COMPOSITES. ARAMID - POLYIMIDE COMPOSITES. ARAMID - PHENOLIC COMPOSITES ARAMID - SILICON COMPOSITES ARAMID - POLYBENZIMIDAZOLE COMPOSITES ARAMID - POLYBENZIMIDAZOLE COMPOSITES ARAMID - PEEK COMPOSITES TER 6 GLASS FIBER COMPOSITES INTRODUCTION GLASS\EPOXY COMPOSITES 6.2.1 S2-449 43k/SP381 unidirectional tape 6.2.2 S2-449 17k/SP 381 unidirectional tape 6.2.3 7781G 816/PR381 plain weave fabric. 6.2.4 E-Glass 7781/EA9396 8-harness satin weave fabric GLASS - POLYESTER COMPOSITES.	1 1 1 1 1 1 1 1
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 CHAP 6.1 6.2 6.3 6.4	INTRODUCTION ARAMID - EPOXY COMPOSITES ARAMID - POLYESTER COMPOSITES ARAMID - BISMALEIMIDE COMPOSITES ARAMID - POLYIMIDE COMPOSITES. ARAMID - PHENOLIC COMPOSITES ARAMID - SILICON COMPOSITES ARAMID - POLYBENZIMIDAZOLE COMPOSITES ARAMID - POLYBENZIMIDAZOLE COMPOSITES ARAMID - PEEK COMPOSITES TER 6 GLASS FIBER COMPOSITES INTRODUCTION GLASS\EPOXY COMPOSITES 6.2.1 S2-449 43k/SP381 unidirectional tape 6.2.2 S2-449 17k/SP 381 unidirectional tape 6.2.3 7781G 816/PR381 plain weave fabric. 6.2.4 E-Glass 7781/EA9396 8-harness satin weave fabric. GLASS - POLYESTER COMPOSITES	1 1 1 1 1 1 1 1
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 CHAP 6.1 6.2	INTRODUCTION ARAMID - EPOXY COMPOSITES ARAMID - POLYESTER COMPOSITES. ARAMID - BISMALEIMIDE COMPOSITES. ARAMID - POLYIMIDE COMPOSITES. ARAMID - PHENOLIC COMPOSITES ARAMID - SILICON COMPOSITES ARAMID - POLYBENZIMIDAZOLE COMPOSITES ARAMID - POLYBENZIMIDAZOLE COMPOSITES ARAMID - PEEK COMPOSITES TER 6 GLASS FIBER COMPOSITES INTRODUCTION GLASS\EPOXY COMPOSITES 6.2.1 S2-449 43k/SP381 unidirectional tape 6.2.2 S2-449 17k/SP 381 unidirectional tape 6.2.3 7781G 816/PR381 plain weave fabric. 6.2.4 E-Glass 7781/EA9396 8-harness satin weave fabric GLASS - POLYESTER COMPOSITES.	1 1 1 1 1 1 1 1

PARAGE	RAPH	PAGE
6.7	GLASS - SILICONE COMPOSITES	
6.8	GLASS - POLYBENZIMIDAZOLE COMPOSITES	
6.9	GLASS - PEEK COMPOSITES	
СНАРТЕ	ER 7 BORON FIBER COMPOSITES	1
7.1	INTRODUCTION	1
7.2	BORON - EPOXY COMPOSITES	
7.2	BORON - POLYESTER COMPOSITES	
7.4	BORON - BISMALEIMIDE COMPOSITES	
7.5	BORON - POLYIMIDE COMPOSITES	
7.6	BORON - PHENOLIC COMPOSITES	
7.0	BORON - FILENOLIC COMPOSITES	
	BORON - SILICON COMPOSITES BORON - POLYBENZIMIDAZOLE COMPOSITES	····· I
7.8		
7.9	BORON - PEEK COMPOSITES	1
СНАРТЕ	ER 8 ALUMINA FIBER COMPOSITES	1
01// 11		
8.1	INTRODUCTION	
8.2	ALUMINA - EPOXY COMPOSITES	
8.3	ALUMINA - POLYESTER COMPOSITES	
8.4	ALUMINA - BISMALEIMIDE COMPOSITES	
8.5	ALUMINA - POLYIMIDE COMPOSITES	
8.6	ALUMINA - PHENOLIC COMPOSITES	
8.7	ALUMINA - SILICON COMPOSITES	
8.8	ALUMINA - POLYBENZIMIDAZOLE COMPOSITES	
8.9	ALUMINA - PEEK COMPOSITES	
CUADT	ER 9 SILICON CARBIDE FIBER COMPOSITES	
CHAPTE		
9.1	INTRODUCTION	
9.2	SILICON CARBIDE - EPOXY COMPOSITES	
9.3	SILICON CARBIDE - POLYESTER COMPOSITES	
9.4	SILICON CARBIDE - BISMALEIMIDE COMPOSITES	
9.5	SILICON CARBIDE - POLYIMIDE COMPOSITES	
9.6	SILICON CARBIDE - PHENOLIC COMPOSITES	
9.7	SILICON CARBIDE - SILICON COMPOSITES	
9.8	SILICON CARBIDE - POLYBENZIMIDAZOLE COMPOSITES	
9.9	SILICON CARBIDE - PEEK COMPOSITES	
CHAPTE	ER 10 QUARTZ FIBER COMPOSITES	1
40.4		4
10.1		
	QUARTZ - EPOXY COMPOSITES	
	QUARTZ - POLYESTER COMPOSITES	
	QUARTZ - BISMALEIMIDE COMPOSITES	
	10.4.1 Astroquartz II/F650 8-harness satin weave fabric	
	QUARTZ - POLYIMIDE COMPOSITES	
10.6	QUARTZ - PHENOLIC COMPOSITES	6

PARAGRAPH PA	\GE
 10.7 QUARTZ - SILICONE COMPOSITES 10.8 QUARTZ - POLYBENZIMIDAZOLE COMPOSITES 10.9 QUARTZ - PEEK COMPOSITE 	6
APPENDIX A1. MIL-HDBK-17A DATA	1
A1.1 GENERAL INFORMATION A1.2 INTRODUCTION A1.3 HANDBOOK TEST PROGRAM A1.3.1 Objectives	2
A1.3.2 Preimpregnated materials A1.3.3 Test panels	2
A1.3.4 Test procedures A1.3.4.1 Tensile tests A1.3.4.2 Compression tests	3
A1.3.4.2 Compression tests A1.3.4.3 Shear tests A1.3.4.4 Interlaminar shear	3
A1.3.4.5 Flexural tests A1.3.4.6 Bearing strength	3 3
A1.3.5 Dry conditioning A1.3.6 Wet conditioning A1.3.7 Test schedule	4
A1.4 DATA PRESENTATION A1.4.1 Epoxy-fiberglass laminates	4
A1.4.2 Phenolic-fiberglass laminates A1.4.3 Silicone-fiberglass laminates A1.4.4 Polyester-fiberglass laminates	4
A1.4.5 Boron-epoxy laminates	5

TABLE PAGE A1.3 Hexcel F-161/7743(550) Fiberglass Epoxy......A1-14 A1.4 Hexcel F-161/7781 (ECDE-1/0-550) Fiberglass Epoxy (26% resin)......A1-24 A1.5 Hexcel F-161/7781 (ECDE-1/0-550) Fiberglass Epoxy (31% resin)......A1-30 A1.6 Hexcel F-161/7781 (ECDE-1/0-550) Fiberglass Epoxy (36% resin)......A1-36 A1.8 Narmco N588/7781 (ECDE-1/0-550) Fiberglass EpoxyA1-46 A1.40 Narmco N506/7781 (ECDE-1/0-A1100) Fiberglass PhenolicA1-56 A1.110 Narmco 5505 Boron-Epoxy (100%-0° Direction)......A1-64 A1.111 Narmco 5505 Boron-Epoxy (0°-90° Crossply)A1-68 FIGURE A1.1.1(a) Tensile stress-strain for E-720E/7781 fiberglass epoxy loaded in the 0° direction......A1-7 A1.1.2(a) Compressive stress-strain for E-720E/7781 fiberglass epoxy loaded in the 0° direction A1-9 A1.1.2(b) Compressive stress-strain for E-720E/7781 fiberglass epoxy loaded in the 90° directionA1-10 A1.1.3 0° - 90° rail shear for E-720E/7781 fiberglass......A1-11 A1.1.4 Poisson effects for E-720E/7781 fiberglass epoxy......A1-12 A1.3.1(a) Tensile stress-strain for F-161/7743 fiberglass epoxy loaded in the 0° directionA1-15 A1.3.1(b) Tensile stress-strain for F-161/7743 fiberglass epoxy loaded in the 90° directionA1-17 A1.3.2(a) Compressive stress-strain for F-161/7743 fiberglass epoxy loaded in the 0° directionA1-18 A1.3.2(b) Compressive stress-strain F-161/7743 fiberglass epoxy loaded in the 90° direction......A1-19 A1.3.3 0° - 90° rail shear for F-161/7743 fiberglass epoxy.....A1-20 A1.3.4 Poisson effects for F-161/7743 fiberglass epoxyA1-21 A1.3.5 Voids vs. resin content and specific gravity for F-161/7743 fiberglass epoxy......A1-22 A1.4.1(a) Tensile stress-strain for F-161/7781 fiberglass epoxy loaded in the 0° direction

FIGURE PAGE A1.4.1(b) Tensile stress-strain for F-161/7781 fiberglass epoxy loaded in the 90° direction A1.4.2(a) Compressive stress-strain for F-161/7781 fiberglass epoxy loaded in the 0° direction (26% resin)......A1-27 A1.4.2(b) Compressive stress-strain for F-161/7781 fiberglass epoxy loaded in the 90° direction (26% resin)......A1-28 A1.4.4 Poisson effects for F-161/7781 fiberglass epoxy (26% resin)......A1-29 A1.5.1(a) Tensile stress-strain for F-161/7781 fiberglass epoxy loaded in the 0° direction A1.5.1(b) Tensile stress-strain for F-161/7781 fiberglass epoxy loaded in the 90° direction A1.5.2(a) Compressive stress-strain for F-161/7781 fiberglass epoxy loaded in the 0° direction (31% resin)......A1-33 A1.5.2(b) Compressive stress-strain for F-161/7781 fiberglass epoxy loaded in the 90° direction A1.5.4 Poisson effects for F-161/7781 fiberglass epoxy (31% resin)......A1-35 A1.6.1(a) Tensile stress-strain for F-161/7781 fiberglass epoxy loaded in the 0° direction A1.6.1(b) Tensile stress-strain for F-161/7781 fiberglass epoxy loaded in the 90° direction (36% resin)......A1-38 A1.6.2(a) Compressive stress-strain for F-161/7781 fiberglass epoxy loaded in the 0° direction (36% resin)......A1-39 A1.6.2(b) Compressive stress-strain for F-161/7781 fiberglass epoxy loaded in the 90° direction A1.6.3 Picture frame shear for F-161/7781 fiberglass epoxy (26%, 315, 36% resin)A1-41 A1.6.4 Poisson effects for F-161/7781 fiberglass epoxy (36% resin)......A1-42 A1.6.5 Voids vs. resin content and specific gravity for F-161/7781 fiberglass epoxy A1.6.6 Thickness vs. resin content for F-161/7781 fiberglass epoxyA1-44 A1.8.1(a) Tensile stress-strain for N588/7781 fiberglass epoxy loaded in the 0° directionA1-47 A1.8.1(b) Tensile stress-strain for N588/7781 fiberglass epoxy loaded in the 90° directionA1-48 A1.8.2(a) Compressive stress-strain for N588/7781 fiberglass epoxy loaded in the 0° directionA1-49

FIGURE	<u>PAGE</u>
A1.8.2(b) Compressive stress-strain for N588/7781 fiberglass epoxy loaded in the 90° direction	.A1-51
A1.8.3 Rail shear for N588/7781 fiberglass epoxy	.A1-52
A1.8.4 Poisson effects for N588/7781 fiberglass epoxy	.A1-53
A1.8.5 Voids vs. resin content and specific gravity for N588/7781 fiberglass epoxy	.A1-54
A1.40.1(a) Tensile stress-strain for N506/7781 fiberglass phenolic loaded in the 0° direction	.A1-57
A1.40.1(b) Tensile stress-strain for N506/7781 fiberglass phenolic loaded in the 90° direction	.A1-58
A1.40.2(a) Compressive stress-strain for N506/7781 fiberglass phenolic loaded in the 0° direction	.A1-59
A1.40.2(b) Compressive stress-strain for N506/7781 fiberglass phenolic loaded in the 90° direction	.A1-60
A1.40.3 0° - 90° rail shear for N506/7781 fiberglass phenolic	.A1-61
A1.40.4 Poisson effects for N506/7781 fiberglass phenolic	.A1-62
A1.40.5 Voids vs. resin content and specific gravity for N506/7781 fiberglass phenolic	.A1-63
A1.110.1 Tensile stress-strain for AVCO 5505 boron/epoxy (100% - 0° orientation/50.3% to 35% fiber volume) loaded in the 0° and 90° direction	.A1-65
A1.110.2 Compressive stress-strain for AVCO 5505 boron/epoxy (100% - 0° orientation loaded in the 0° direction	.A1-66
A1.110.3 Poisson effects for AVCO 5505 boron/epoxy (100% - 0° direction)	.A1-67
A1.111.1(a) Tensile stress-strain for AVCO 5505 boron/epoxy (0° - 90° crossply) loaded in the 0° direction	.A1-69
A1.111.1(b) Tensile stress-strain for AVCO 5055 boron/epoxy (0° - 90° crossply) loaded in the 45° direction	.A1-70
A1.111.3 Poisson effects for AVCO 5055 boron/epoxy (0° - 90° crossply)	.A1-71
REFERENCES	.A1-72
INDEX	I-1
CONCLUDING MATERIAL	C-1

Chapter	Section	<u>Title</u>	Change type
1	1.4	Presentation of Data	revision
1.4.3		Individual data tables-normalized data	revision
	1.4.4	Individual data tables-unnormalized data	new
	1.4.5	Individual data tables-notched laminate data	new
	1.4.6	Individual data tables-bearing data	new
	1.4.7	Individual data tables-bearing/bypass data	new
4	4.2.27	T300 3k/EA 9396 8-harness satin fabric	new
	4.2.28	AS4 6k/PR500 5-harness satin fabric	new
	4.2.29	T650-35 12k/997 unidirectional tape	new
	4.2.31	IM7 6k/PR500 4 harness satin fabric	new
	4.2.32	T650-35 3k/976 8-harness satin fabric	new
	4.2.33	T700S 12k/3900-2 plain weave fabric	new
	4.2.34	T800H 12k/3900-2 unidirectional tape	new
	4.2.35	T650-35 3k/976 plain weave fabric	new
	4.4.5	IM7 6k/5250-4 RTM 4-harness satin fabric	new
	4.4.6	T650-35 3k/5250 8-harness satin fabric	new
	4.4.7	T650-35 3k/5250-4 plain weave fabric	new
	4.10	CARBON-CYANATE ESTER COMPOSITES	new
	4.10.1	M55J 6k/954-3 unidirectional tape	new
6	6.2.4	E-Glass 7781/EA 9396 8-harness satin weave	new

SUMMARY OF CHANGES IN REVISION MIL-HDBK-17-2F

CHAPTER 1 GENERAL INFORMATION

1.1 INTRODUCTION

The standardization of a statistically-based mechanical property data base, procedures used, and overall material guidelines for characterization of composite material systems is recognized as being beneficial to both manufacturers and governmental agencies. It is also recognized that a complete characterization of the capabilities of any engineering material system is primarily dependent on the inherent material physical and chemical composition which precede, and are independent of, specific applications. Therefore, at the material system characterization level, the data and guidelines contained in this handbook are applicable to military and commercial products and provide the technical basis for establishing statistically valid design values acceptable to certificating or procuring agencies.

This standardization handbook has been developed and is maintained as a joint effort of the Department of Defense and the Federal Aviation Administration. It is oriented toward the standardization of methods used to develop and analyze mechanical property data on current and emerging composite materials.

1.2 PURPOSE AND SCOPE OF VOLUME 2

A primary focus of this Handbook is guidance on the selection and use of composite materials. The data collected within this volume are presented to allow initial assessments of material adequacy for a particular application. It provides a common database that will allow significant reductions in the amount of validation data necessary to use the data for design purposes. This handbook cannot be cited as a DoD contractor requirement.

This handbook volume provides a standard source of statistically based mechanical property data for current and emerging polymeric matrix composite materials. Physical, chemical, and mechanical values of the composite constituents - the fibers, matrix material, and prepreg - are reported where applicable. Subsequent chapters include data summaries for the various composite systems. Individual chapters focus on particular type of reinforcement fiber. Strength and strain-to-failure properties are reported in terms of mean and A-values and/or B-values. The A and B statistical allowable values are determined by the procedures of Volume 1. Only mean values are reported for stiffnesses. Maximum and minimum data points, and coefficients of variation are reported for all data items.

The verification of the ability to attain equivalent statistical properties to the required level of risk (probability and confidence) is the responsibility of the user. The verification of the ability of a manufacturer to attain the same statistical properties should be performed as outlined in Volume 1, Chapter 2. The specific process to leverage the data in this volume is described in Volume 1, Section 2.3.7.

The source and context for much of the handbook data sets has historically come from experience with aerospace flight-critical structures. However, all transportation industries (aerospace, ground, rail, and marine), whether commercial or military, as well as other applications including civil infrastructure and general industrial products, will find the handbook useful. Incorporation of additional information related to broader applications is ongoing. Initial input has led to predominantly lamina mechanical properties of prepreg tape and fabric. The range of materials has expanded to cover resin transfer molded and repair materials. The range of properties covered has expanded to laminate mechanicals. Expansion of the ranges of both properties and material forms is expected to continue.

Statistically based strength properties are defined for each composite material system over the usable range of environment. The intent is to provide data at the upper and lower limits of the environmental range for a particular material. If intermediate environmental condition data are available, they are included to assist in defining the relationship over the environmental range. The statistically based strength data can be used as a starting point for establishing structural design allowables when stress and

strength analysis capabilities permit lamina and laminate level margin of safety checks. Depending on the application, some structural design allowables will have to be determined empirically at higher testing levels (element, sub-component, full-scale) as they may be dependent on design geometry and philosophies. Additional information and properties will be added to this Volume as they become available and are demonstrated to meet the handbook's criteria.

All statistical data included herein are based on test specimens only. Unless otherwise noted, test specimen dimensions conform to those specified for the particular test method that is used. Standard test methods are recommended in Volume 1. In Volume 2, data are limited to those obtained from recommended in Volume 1. The data contained in this volume may have been provided by more than one source. Where more than one source for data is used for a reported property, the variability of the data from source to source has been reviewed statistically in accordance with Volume 1, Chapters 2 and 8. If the variability has been sufficiently small for the data to be considered from the same population, the data sets are combined and treated as one data set. Where there are reasons for differences among the data sets, both data sets are presented (for example, Volume 2, Section 4.2.8).

The designer, manufacturer and all users are responsible for any translation of the data contained herein to other production sites, specimen dimensions, temperature, humidity, and other environmental conditions not specifically identified in this document. Issues not addressed in this document are scaleup effects and the influence of the selected test method on properties. In general, decisions concerning which properties to use for a specific application or design are the responsibility of the user and are outside the scope of this handbook. MIL-HDBK-17, Volume 3, addresses some of the relevant issues regarding design usage of the data in this volume. It is the responsibility of the handbook user to meet end use, customer and regulatory requirements.

An overview of the material, guidelines for its usage, and details of the statistical and technical analysis of the data are provided at the beginning of each section of Chapters 4 through 10. The format of all information in each data set is described in detail in Section 1.4. A more detailed description of fibers and/or matrix materials may be found in Volume 3, Chapter 2.

1.3 ORGANIZATION OF DATA IN HANDBOOK

The data in Volume 2 is divided into chapters of fiber properties, resin properties, and composite properties organized by fiber and then resin.

1.3.1 Fiber properties

Chapter 2 in Volume 2 will provide data for fiber properties. Sections are to be included for different types of fiber, e.g., glass fibers and carbon fibers. Fiber properties and methods for obtaining them are discussed in Volume 1, Chapter 3.

1.3.2 Matrix properties

Matrix or resin properties will be included in Chapter 3 which will be divided into sections according to the type of resin. For example, Section 3.2 will give data for epoxies and Section 3.3 will provide data for polyester resins. Resin properties and methods for obtaining them are presented in Volume 1, Chapter 4.

1.3.3 Composite properties

The remaining chapters of Volume 2 will provide data for prepreg, lamina, laminate, and joint properties. Methods for characterizing materials are discussed in Volume 1, Chapter 5, and properties and definitions for laminae and laminates are presented in Volume 1, Chapter 6. Properties for structural elements are presented in Volume 1, Chapter 7. The statistical methods used in determining these proper-

ties are discussed in Volume 1, Chapter 8. There will be individual chapters for each family of composites based on fiber type. For example, Chapter 4 describes carbon fiber composites.

1.4 PRESENTATION OF DATA

This section provides information on how the data are presented in this volume, both to help understand the data as presented and to ensure the data presentation is consistent. Information enclosed in {}'s represents data that should be included in a given field. Information that is not applicable or not available is omitted.

Each section is titled based on the following information.

{Fiber Commercial Name} {Filament Count}/{Matrix Commercial Name} {Tape/Weave Type/Weave Style} {Critical Processing Information}

Examples of the tape/weave type include unidirectional tape, plain weave, and five-harness satin weave. Weave styles are descriptive codes most commonly used for glass fabrics, such as 7781. Additional information is shown when it is necessary to discriminate between data sets. This includes material information such as glass surface finish or critical processing information, such as bleed or no-bleed. If a warning regarding data documentation is included for the data set, an asterisk follows the section title.

Each section contains three types of information (Figure 1.4). The data set description identifies the

specific material system, provides selected supplier information, and discusses any anomalies which appeared during data sets. The summary data tables give an overview of property types and data classes included in the section. The individual data tables provide the details of data analysis. A separate individual data table is included for each test type, loading direction, and lay-up in the data set. The following describe the content and format for each of these subsections.

1.4.1 Data set description

The first page of each section presents general information.

Material Description:

Material - {Fiber Commercial Name} {Filament Count}/ {Matrix Commercial Name} for the material tested.

FIGURE 1.4 Types of information in each data section.

Form - Description of material tested including unidirectional tape or weave type, nominal fiber areal weight, typical cured resin content, typical cured ply thickness, sizing, tackifier or binder (class, form, manufacturer, and common name), and/or scrim fiber class and scrim fabric style as relevant. This information is specific to the data set that follows it.

Processing - Description of processing including information listed under Process Description in Volume 1, Table 2.5.6.

General Supplier Information: This section presents information often provided by the material supplier. There are no requirements for substantiation of this information.

Fiber: Often includes precursor, surface treatment, twist, filament count, typical tensile modulus or modulus family, and typical tensile strength.

Matrix: Often includes resin type, cure temperature family, description of characteristics.

Maximum Service Temperature: For dry and wet conditions.

Typical Applications: Brief description of applications. May be as generic as "general purpose structural applications" or more specific based on critical characteristics.

Data Analysis Summary: This section contains pertinent information from the statistical analysis of the data. If no other information is included in this section, no data analysis.

Testing: Often includes information on documented deviations from standard test method.

Outliers: Often includes information on the outliers observed, particularly after pooling batches, and their disposition (see Volume 1, Sections 2.5.8 and 2.4.4).

Batch Definition: Often includes information on independence of fiber and matrix lots used in the composite batches.

Batch-to-Batch Variability and Pooling of Data Sets: Often includes information on decision-making for pooling based on batch-to-batch variability. May also contain information on relative batch behavior, such as one batch consistently providing results different from other batches.

Additional Information: For any notes or comments to highlight other concerns by the Secretariat or Data Review working group during analysis and review of the data.

Processing Trace: When available, a processing trace will be presented. Included will be the processing history based on the specification including ramp rates and relative timing of the application of the various processing parameters.

Lay-Up Schematic: When available, a sketch of the processing lay-up will be presented. Included will be bagging, damming, bleeder material, and so on.

The remaining pages in each data section represent data analyzed by the Secretariat, evaluated by the Data Review working group, and approved by the Coordination Group. These data are presented in tables that are described in more detail below. Tables in each section are organized in the same order the properties are listed in the summary tables.

1.4.2 Summary tables

The format for the first page of summary information is shown in Table 1.4.2(a). Details for different portions of the figure are indexed to descriptions in the text by numbered circles.

The first set of information in a data section is a summary table containing information on the materials, processing, etc. The box with a heavy border in the upper right-hand corner identifies the first summary table.

{Fiber Class}/{Matrix Class} {Nominal FAW} - {Tape/Weave Type} {Fiber}/{Matrix} Summary

This box contains the fiber/matrix class of the material, such as carbon/epoxy, identified using the material system codes in Section 1.5.1. With the fiber and matrix classes is the nominal fiber areal weight and the abbreviated tape/weave type. Abbreviations for tape and weave type include UT (unidirectional tape), PW (plain weave), or *n*HS (*n*-harness satin) The material identification is summarized by the fiber and matrix names.

Material information is presented for the composite, the preconsolidation form, the fiber, and the matrix. Composite material identification, presented in the Material slot, is the same as the section title.

The preconsolidation Form description depends on the form type. For prepregs, the Form description includes

{Manufacturer} {Commercial Name} {Weave pattern} {Tape/Weave Type} prepreg

For prepregged fabric, information such as warp and fill fiber spacing is included when it is available. For RTM and wet fabric lay-up, the Form description includes

{Weaver} {Fabric Style if glass} {Weave Pattern}{tow/in x tow/in} {Fabric Sizing Identification} {Fabric Sizing Content}, {Tackifier} tackifier + {liquid/film} resin

If a binder is used, information on the binder replaces information on a tackifier.

Fiber identification includes {Manufacturer} {Commercial Name} {Filament Count} {Sizing} {Sizing Amount} {Twist} {[not] surface treated/surface treatment type}. Resin identification is presented as {Manufacturer} {Commercial Name}.

- Overall processing information is presented as Reinforcement Application Process (how the fiber/preform was put together) followed by Cure Process Type (how the part was cured/molded) from Table 1.4.2(b). Basic processing information for one or more processing steps, including the type of processing step (from Table 1.4.2(b), temperature, pressure, duration, and any other critical parameters, is presented. A more complete description may be provided in graphical form as part of the summary information (see Section 1.4.1).
- Glass transition temperature under dry and wet conditions is presented with the test method used to obtain these data (See Volume 1, Section 6.6.3). These may be nominal values obtained from the matrix supplier.
- Any warning for limited data documentation is presented on each page of data presentation. On the first page of the data section, a warning is shown below the material identification block.
- 6 The block below the material identification block presents various dates relevant to the fabrication and testing of the material. The date of data submittal determines the data documentation requirements that were used for the data set (Volume 1, Section 2.5.6) and the date of analysis determines the statistical analysis that was used (Volume 1, Section 8.3). Ranges of dates are presented where appropriate, such as for a testing program that lasted several months.
- Lamina properties are summarized with the class of data provided for each property. The columns of the lamina property summary table define the environmental conditions. The first column contains room temperature ambient or dry data. Dry is used only if a drying procedure was used. Ambient refers to as-fabricated with subsequent storage in an ambient laboratory environment. The remaining columns are ordered from lowest to highest moisture content and within a given moisture content, from lowest to highest temperature. If there is enough space, a blank column separates the room temperature ambient/dry column from the other columns and each moisture condition from the others.

MIL-HDBK-17-2F

Volume 2, Chapter 1 General Information

The rows of the lamina summary table identify the type test and direction. The basic mechanical properties are included in each summary table. If data are available, additional properties are appended in the following order:

SB strength, 31-plane	Gıc	CTE 1-axis
SB strength, 23-plane	Gııc	CTE 2-axis
3 -, - 1		CTE 3-axis

8

For each test type and direction, the symbol for each class of data for the strength, modulus, Poisson's ratio, and strain-to-failure is provided, in that order. The symbols are listed in Table 1.4.2(c). For example, if the entry under RTA and Tension, 1-axis is BI-S, there is room temperature ambient data for longitudinal tension strength, modulus, and strain-to-failure. The dash indicates that there are no Poisson's ratio data. The strength data are B30 (robust sampling), the modulus data are interim, and the strain-to-failure data are screening. Data classes are defined in Volume 1, Section 2.5.1, and summarized in Table 1.4.2(c). Certain test methods, for example, short beam strength, result only in screening data.

MIL-HDBK-17-2F

Volume 2, Chapter 1 General Information

 TABLE 1.4.2(a)
 Summary table format, first page.

MATERIAL:	{Fiber} {Filament-Count}/{Matrix} {Weave pattern} 2 {Tape/Fabric}						0
FORM:	{input depo	ends on type	of preconsolic	dation form and pro	ocessing}		
FIBER:	•	{Manufacturer} {Commercial Name} MATRIX: {Manufacturer} {Commercial Name} {Filament Count} {Sizing} {Twist}		ercial Name}			
PROCESSING:	{Reinforcement Application}, {Mold Type} {Type of Processing Step}: {Temperature}, {Duration}, {Pressure}			<pre>re}, {Duration},</pre>			
T _g (dry):	XXX°F	Tg(wet):	XXX°F	T _g METHOD:	{Method}		

*{Warning}	9	
Date of fiber	manufacture	

Date of composite manufacture	MM/YY		6
Date of prepreg manufacture	MM/YY	Date of analysis	MM/YY
Date of resin manufacture	MM/YY	Date of data submittal	MM/YY
Date of fiber manufacture	MM/YY	Date of testing	MM/YY

LAMINA PROPERTY SUMMARY

	{RTA}	{Ambient/dry, coldest to hottest}	{Wet, coldest to hottest}	
Tension, 1-axis				
Tension, 2-axis				
Tension, 3-axis				
Compression, 1-axis				
Compression, 2-axis		The data class is noted		
Compression, 3-axis		for each type test/direction/		
Shear, 12-plane		environmental-condition combination		
Shear, 23-plane				
Shear, 31-plane				
{Additional type test/direction}				

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: 8

A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c)).

TABLE 1.4.2(b) Composite reinforcement application, cure process type, and processing step	
descriptions.	

Reinforcement Application Process	Cure Process Type	Type of Processing Step
automated fiber placement - tape automated fiber placement - towpreg automated fiber placement - wet automated lay-up - prepreg automated lay-up - wet hand lay-up - prepreg hand lay-up - wet preform - braid preform - weave spray wound - dry wound - wet wound - prepreg	compression molding diffusion bonding injection molding - vacuum assisted injection molding - vacuum assisted injection molding - reaction injection molding - liquid oven autoclave hydroclave trapped rubber pultrusion resin transfer molding VARTM [vacuum-assisted resin transfer molding] vacuum infiltration vapor deposition e-beam	age-harden anneal consolidate [pre-cure] cooldown cure - bleed cure - no bleed debulk densify injection isothermal dwell part insertion part removal postcure preform insertion preheat
	induction	

 TABLE 1.4.2(c) MIL-HDBK-17 data classes and minimum sampling requirements.

			Minimum I	Requirements
Designation	Symbol	Description	Number of Batches	Number of Specimens
A75	А	A-basis – Robust Sampling	10	75
A55	а	A-basis – Reduced Sampling	5	55
B30	В	B-Basis – Robust Sampling	5	30
B18	b	B-Basis – Reduced Sampling	3	18
М	М	Mean	3	18
I	I	Interim	3	15
S	S	Screening	1	5

Continuing on the second page of summary information (Table 1.4.2(d)):

- (1) Any warning is placed at the top of this page.
- The box at the top of the second page of summary information presents basic physical parameters for the data set. The first data column contains nominal values, typically specification information. This information may not match information directly applicable to this data set. For example, the nominal fiber volume according to the prepreg manufacturer may be one value, while the data are normalized to a different value based on Volume 1, Section 2.5.7, to provide consistency within the handbook. One or more of the nominal values can be calculated from other information if the values are not otherwise available. For example, if unavailable the nominal composite density will be calculated from nominal fiber density, matrix density, and fiber volume. In this case, a note describes the calculation. If the nominal fiber volume was not supplied by the data source, it was calculated based on resin content, fiber density and composite density, assuming void content is 0%.
- (3) The second data column presents the range of values for the data set submitted. These data may not correlate directly with each other. For example, fiber volume and fiber areal weight may be batch average measurements, while the cured ply thickness values are generally based on individual specimen measurements.
- (4) The last column presents the test method used to obtain these data. This information was not included in the early versions of data documentation requirements.
- (5) Laminate property data are summarized in the lower box in the same way as lamina property data are summarized on the previous page. Families of laminates are provided with properties listed below each laminate family. A laminate family is identified by square brackets surrounding a list of the ply orientations separated by commas. More specific lay-up information is included in the laminate summary table only if needed to differentiate among lay-ups. Specific lay-up information is provided in the detailed tables that follow. The type test and direction are included only if data are available and are based on Table 1.4.2(e).

Unless otherwise noted, the x-axis corresponds to the +0-direction of the laminate lay-up. Data included for this material are indicated by the data class symbol, identified in the footnote.

MIL-HDBK-17-2F

Volume 2, Chapter 1 General Information

 TABLE 1.4.2(d)
 Summary table format, second page.

{Warning} (1)

		Nominal 2	As Submitted ③	Test Method
Fiber Density	(g/cm ³)	X.XX	{Minimum} - {Maximum}	{Method}
Resin Density	(g/cm ³)	X.XX	{Minimum} - {Maximum}	{Method}
Composite Density	(g/cm ³)	X.XX	{Minimum} - {Maximum}	{Method}
Fiber Areal Weight	(g/m ²)	XXX	{Minimum} - {Maximum}	{Method}
Fiber Volume	(%)	XX	{Minimum} - {Maximum}	{Method}
Ply Thickness	(in)	0.0XXX	{Minimum} - {Maximum}	{Method}

LAMINATE PROPERTY SUMMARY 5

	{RTA}	{Amb	ent/dry, o	coldest to	hottest}		{Wet, c	oldest to h	ottest}
{Laminate Family}									
{Type test/direction}									
			The d	lata class	is noted				
{Laminate Family}			for each	n type tes	st/direction/				
{Type test/direction}		env	ironment	al-condit	ion combina	tion			

 $\label{eq:classes} Classes of data in Strength/Modulus/Poisson's ratio/Strain-to-failure order \\ \texttt{A} = \mathsf{A75}, \texttt{a} = \mathsf{A55}, \texttt{B} = \mathsf{B30}, \texttt{b} = \mathsf{B18}, \texttt{M} = \mathsf{Mean}, \texttt{I} = \mathsf{Interim}, \texttt{S} = \mathsf{Screening}, \texttt{-} = \mathsf{no} \ \mathsf{data} \ (\mathsf{See} \ \mathsf{Table} \ \texttt{1.4.2(c)}).$

MIL-HDBK-17-2F

Volume 2, Chapter 1 General Information

Type Test	(in order)	Dir	ection
Tension	Filled Hole Tension (FHT)	x-axis	xy-plane
Compression	Filled Hole Compression (FHC)	y-axis	yz-plane
Shear	Compression After Impact (CAI)	z-axis	zx-plane
Open Hole Tension (OHT)	Bearing		-
Open Hole Compression (OHC)	Bearing/Bypass		
	CTE		

TABLE 1.4.2(e) Laminate type test and directions

1.4.3 Individual data tables - normalized data

The format for a data table containing normalized material property information is shown in Table 1.4.3(a). Requirements and procedures for normalization are found in Volume 1, Section 2.5.7 and 2.4.3.

- Warnings are shown on each page for data sets that do not meet the data documentation requirements. Many of the data sets were submitted before the establishment of the data documentation requirements. Data sets that do not meet the first version of data documentation requirements or the data documentation requirements that were current when the data were submitted will not be considered for B or A data classes.
- At the top right corner of each page is a box with a heavy border. This box contains information that identifies the data set, the type of test for which results are shown, specimen orientation, test conditions, and the classes of data. The tape/weave type abbreviations are described for the top right corner of the first summary page (circle-1), Specimen orientation is provided as a lay-up code with the loading direction used as the reference axis. For example, a unidirectional specimen is described as [0]_n for 1-axis properties and [90]_n for 2- axis properties. Lay-up codes are described in Section 1.6.

{Table Number}	
{Fiber Class}/{Matrix Class} {FAW}-{Tape/Weave Type}	- FAW, fiber areal weight
{Fiber Name}/{Matrix Name}	
{Test Type}, {Direction}	
{Lay-up}	
{Test Temperature}/{Moisture Content}	- repeated for each data column
{Data Classes }	- includes symbols for all data classes
	on this page in descending order
	(from A75 to S).

Material identification is provided for the composite material as

ً₿

{Fiber} {Filament-Count}/{Matrix} {Tape/Weave Type} {Critical processing parameters}

This information should be the same as the section title and the material identification on the first page of the summary tables. The range of physical parameters, resin content, fiber volume, ply thickness, composite density, and void content, for the *cured* material are presented for the data on this particular page. The endpoints of these ranges may not correspond directly as fiber volume, resin content, and so on are generally available as a batch or panel average while the cured ply thickness values are usually based on individual specimen measurements.

Û

TABLE 1.4.3 Format for normalized property table.

{Warning}								
MATERIA	L: {Fibe	r} {Filament co	unt}/{Matrix} {Ta	pe/weave	type} 3			
RESIN CO FIBER VO PLY THIC	DLUME: XX.X	- XX.X wt% - XX.X vol % KX - 0.0XXX in.	COMP: DE VOID CON		X.XX-X.XX (0.X to X.X %		(9
TEST ME	THOD:		MODULUS	GALCUL	ATION:	0		
{Organiz	zation} {Number} {I	Date}	{Method	}, XXXX - 2	XXXX			
NORMAL		nod}		6				
	Content (%) m at T, RH		D					
		Normalized	Measured	Normaliz	ed Measur	ed Norm	alized	Measured
F ^{tu} 🕄 (ksi)	Mean Minimum Maximum C.V.(%) B-value Distribution C ₁ C ₂		9					
	No. Specimens No. Batches Data Class Mean							
\mathbf{E}_{1}^{t}	Minimum Maximum C.V.(%)							
(Msi)	No. Specimens No. Batches Data Class							
v_{12}^{t}	Mean No. Specimens No. Batches Data Class							
	Mean Minimum Maximum C.V.(%)							
ε1 ^{tu} (με)	B-value Distribution C_1 C_2			be equiva	ues presented lent to stress lear analysis)			
0	No. Specimens No. Batches Data Class							

The test method is identified with the organization, number, and date. For compression after impact, the nominal impact energy level used for the test is appended to the test method, since alternate levels are often used. See Tables 1.4.5 - 1.4.7 for additional information that describes testing parameters for notched laminates, bearing, and bearing/bypass.

6

The method of calculating the modulus is presented for mechanical property data. This includes the calculation method, and the location or range of measurements used for the calculation. Unless otherwise stated (in a footnote), the same method and range is used for Poisson's ratio.

6 The normalization method is presented for data that have been normalized (See Volume 1, Section 2.4.3). The fiber volume to which the data are normalized is also included. This value is typically 60% for carbon-fiber-reinforced unidirectional material (tape) and 57% for carbon-fiber-reinforced fabric. The normalizing fiber volume for all glass-fiber-reinforced material is 50%. Types of normalization as entered are:

Normalized by fiber volume to XX% (0.0XXX in. CPT) Normalized by specimen thickness and batch fiber volume to XX% (0.0XXX in. CPT) Normalized by specimen thickness and batch fiber areal weight to XX% fiber volume (0.0XXX in. CPT)

Corresponding cured ply thickness (CPT) values, based on a nominal fiber areal weight, are included for reference for each method.

At the top of each data column are the test conditions. Nominally dry conditions, for materials that are fabricated and stored under controlled conditions are noted. Wet conditions that are not conditioned to equilibrium are also noted. The source code provides a means for identifying data sets from the same source. No other source identification is provided.

Specific properties are identified in the tables with symbols. These symbols are a combination of an initial letter with subscripts and super scripts added as appropriate. Components of the property symbols are shown in Table 1.4.3(b).

Initial letter(s)	Test type superscripts	Property descriptor superscripts	Test direction subscripts
F - strength ϵ - strain E - modulus G - shear modulus, strain energy release rate v - Poisson's ratio CTE - coefficient of thermal expansion	t - tension c - compression s - shear sbs - short beam strength oht - open hole tension ohc - open hole compression fht - filled hole tension cai - compression after impact br - bearing byp - bypass	u - ultimate y - yield	1, 2, 3 12, 23, 31 x, y, z, xy, yz, zx

TABLE 1.4.3(b) Components used to construct property symbols.

Property symbols are created by combining these components with test type superscripts preceding property descriptor super scripts. Thus, the symbol for ultimate tensile strength in the 1 direction is F_1^{tu} . The property descriptor superscripts are only used for strength and strain. Exceptions to this rule are strain energy release rates, for example, G_{1c} , and bearing/bypass data where "byp" is used as a subscript for the bypass strength.

Strength data and strain-to-failure data are presented in the handbook with a full set of statistical parameters. All statistical parameters are presented for normalized and as-measured strength data. All statistical parameters are presented for as-measured strain-to-failure data. Note that the strain values presented are "as measured" and may not be equivalent to stress divided by modulus (linear analyses). The normalized data column is listed first, followed by the measured data column. The data class using the designation from Table 1.4.2(c) is indicated for each property/condition combination. B-values are presented only for B and A data classes. A-basis values are presented for A data classes. The statistical distribution or method of analysis is presented. The constants, C₁ and C₂, correspond to the distribution as listed in Table 1.4.3 (c).

 C_1 for the Weibull distribution and C_1 and C_2 for the Normal distribution have the same units as the property (e.g., ksi for strength and $\mu\epsilon$ for strain). C_2 for the Weibull distribution and C_1 and C_2 for the Nonparametric method are dimensionless. For the Lognormal distribution, the units for C_1 and C_2 are log(property unit). For the ANOVA method, C_1 and C_2 are the square of the property units.

	C 1	C ₂
Weibull	scale parameter	shape parameter
Normal	mean	standard deviation
Lognormal	mean of the natural log of the data	standard deviation of the natural log of the data
Nonparametric	rank	data point (rank)
ANOVA	tolerance limit factor	estimate of the population stan- dard deviation

ABLE 1.4.3(c) Distributions and associated constants.
--

Modulus data are presented with only mean, minimum, maximum, coefficient of variation, batch size, sample size, and data class. Values are presented for both normalized and as-measured data. Where available, Poisson's ratio data are presented with batch size, sample size, and data class information.

- 0
 - Footnotes are presented wherever additional information is pertinent. Information frequently presented in footnotes include conditioning parameters, reasons for not presenting B-values, and deviations from standard test methods.

1.4.4 Individual data tables - unnormalized data

Table 1.4.4 shows an example table for material properties that are not normalized. The basic table format and information are identical to the table format and information for normalized data. Only asmeasured data are presented in each column of information. The statistical parameters are the same provided for normalized data.

1.4.5 Individual data tables - notched laminate data

Table 1.4.5 shows the format for notched laminate data, including data from open and filled hole tests. The numbered circles refer to the notes for Table 1.4.3(a) with the following additional information. Properties in the index box (upper right-hand corner) are abbreviated OHT (open hole tension), OHC (open hole compression), FHT (filled hole tension), and FHC (filled hole compression). The headers and data for fastener type, torque, hole clearance, and countersink angle & depth appear only for filled hole tests. The data are normalized according to Volume 1, Section 2.5.7, with the descriptions noted with Table 1.4.3(a). Symbols are described in Tables 1.4.3(b), Open hole tension in the x-axis direction is shown as an example.

1.4.6 Individual data tables - bearing data

Table 1.4.6 presents the format for bearing data. The numbered circles refer to the notes for Table 1.4.3(a) with the following additional information. The property in the index box (upper right-hand corner) is Bearing. The data are not normalized according to Volume 1, Section 2.5.7. Symbols are described in Tables 1.4.3(b). Bearing in the x-axis direction is shown as an example. Information on hole clearance, and countersink angle & depth appear as a footnote if applicable and available.

1.4.7 Individual data tables - bearing/bypass data

Table 1.4.7 shows the format for bearing/bypass data. The numbered circles refer to the notes for Table 1.4.3(a) with the following additional information. The property in the index box (upper right-hand corner) is Bearing/Bypass. The data are not normalized according to Volume 1, Section 2.5.7. If data are available for more than one bearing/bypass ratio, they are presented in columns ordered from lowest to highest ratio for each environment. Symbols are described in Tables 1.4.3(b). Tensile bypass and bearing in the x-axis direction are shown as an example. Information on hole clearance, and countersink angle & depth appear as a footnote if applicable and available.

MATERIAL	_:	{Fiber} {Filament coun	t}/{Matrix} {	Tape/weave	e type	≥} €		
RESIN CO FIBER VO PLY THICI	LUME:	XX - XX wt% XX - XX vol % 0.0XXX - 0.0XXX in.	Comp: E Void Co	DENSITY: DNTENT:	X.X 0.X	X-X.XX g/cm ³ (to X.X %		0
LEST MET	HOD:	4	MODULI	JS CALCU	LATIO	ON: 6		
{Org	anization} {	Number} {Date}	{Me	ethod}, XXX	xx - >	KXXX με		
NORMALI	ZED BY:	Not normalized	6					
Temperatu Moisture C Equilibrium Source Co	ontent (%) at T, RH		Ø					
	Mean Minimum Maximum C.V.(%)		9					
F ₂ ^{tu} 8 (ksi)	B-value Distributio C ₁ C ₂	n						
	No. Speci No. Batch Data Clas	es						
E_2^t	Mean Minimum Maximum C.V.(%)							
(Msi)	No. Speci No. Batch Data Clas	es						
v_{21}^{t}	Mean No. Speci No. Batch Data Clas	es						
	Mean Minimum Maximum C.V.(%)							
ε ₂ ^{tu} (με)	B-value Distributio C1	n		"as mea	sured	strain values p I" and may not livided by modu analysis)	be equivalent	
0	C ₂ No. Speci No. Batch Data Clas	es						

TABLE 1.4.5 Format for notched laminate strength property table.

{Warning}								
MATERIA	L: {Fibe	er} {Fil. Count}/	{Matrix} {tape/v	weave t	ype}	6		
RESIN CO FIBER VO PLY THIC	DLUME: XX-X	(X wt% (X % XX - 0.00XX in.	COMP. DEN VOID CONTE	ENT:	0.0XX-0 X.X - X.	0.0XX lb/in ³ .X %	e	•
TEST ME	THOD:	{Org. Method ·	Date}	4				
SPECIME FASTENE TORQUE:		t = {thickness} { } { }	ŀ	HOLE C	LEARA			icable} icable}
NORMALI		{Method}				U	1	
Temperature (°F) Moisture Content (%) Equilibrium at T,RH(°F, %) Source Code								
		Normalized	Measured	Norm	alized	Measured	Normalized	Measured
8	Mean Minimum Maximum C.V.(%) B-value		9					
F _x ^{oht} (ksi)	Distribution C_1 C_2							
	No. Specimens No. Batches Data Class							
	Mean Minimum Maximum C.V.(%)							
F _x ^{ohc}	B-value Distribution							
(ksi)	C ₁ C ₂							
	No. Specimens No. Batches Data Class							

TABLE 1.4.6 Format for bearing strength property table.

₩arning}		
MATERIAL:	{Fiber} {Fil. Count} / {Matrix} {tape/weave type}	
RESIN CONTENT: FIBER VOLUME: PLY THICKNESS:	XX-XX % VOID CONTENT: X.X - X.X % 0.00XX - 0.00XX in.	
TEST METHOD: TYPE OF BEARING	{Org. Method - Date}	
JOINT CONFIGUR Member 1 (t,w,lay Member 2 (t,w,lay FASTENER TYPE: TORQUE: NORMALIZED BY:	ATION -up): {thickness, width, lay-up } -up): {thickness, width, lay-up } { } THICKNESS/DIAMETER: { } { } EDGE DISTANCE RATIO: { } PITCH DISTANCE RATIO: { }	
Temperature (°F) Moisture Content (9 Equilibrium at T, RH Source Code		
Mean Minimu Maxim C.V.(%	um	
B-valu F ^{bru} _x <i>a</i> Distrib		
(ksi) C ₁ C ₂		
No. Ba Data C		
Mean Minimu Maxim C.V.(%	um	
F _x ^{bry} B-valu (ksi)Distrib C ₁ C ₂		
No. Sp No. Ba Data C		

TABLE 1.4.7 Format for bearing/bypass property table.

{Warning}	
MATERIAL:	{Fiber} {Fil. Count} / {Matrix} {tape/weave type}
FIBER VOLUME:	XX-XX wt% COMP. DENSITY: 0.0XX-0.0XX lb/in ³ VOID CONTENT: X.X - X.X % 0.00XX - 0.00XX in.
TEST METHOD:	{Org. Method - Date}
JOINT CONFIGURATI Member 1 (t,w,lay-up Member 2 (t,w,lay-up FASTENER TYPE: TORQUE:): {thickness, width, lay-up}
NORMALIZED BY:	Not normal- ized
Temperature (°F) Moisture Content (%) Equilibrium at T, RH (° Source Code	PF, %)
Bearing/Bypass Ratio	
F ^{byp-tu} (3) Mean Minimu (ksi) Maximu C.V.(%)	um 🕑
$\begin{array}{c} & \text{Mean} \\ & \text{Minimu} \\ & \text{Maximu} \\ & \text{C.V.(\%)} \\ & \text{B-value} \\ & \text{B-value} \\ & \text{F}_x^{br} & \text{Distribu} \\ & (\text{ksi}) & \text{C}_1 \\ & \text{C}_2 \end{array}$	m um (m m m m m m m m m m m m m m m m m

1.5 MATERIALS SYSTEMS

1.5.1 Materials system codes

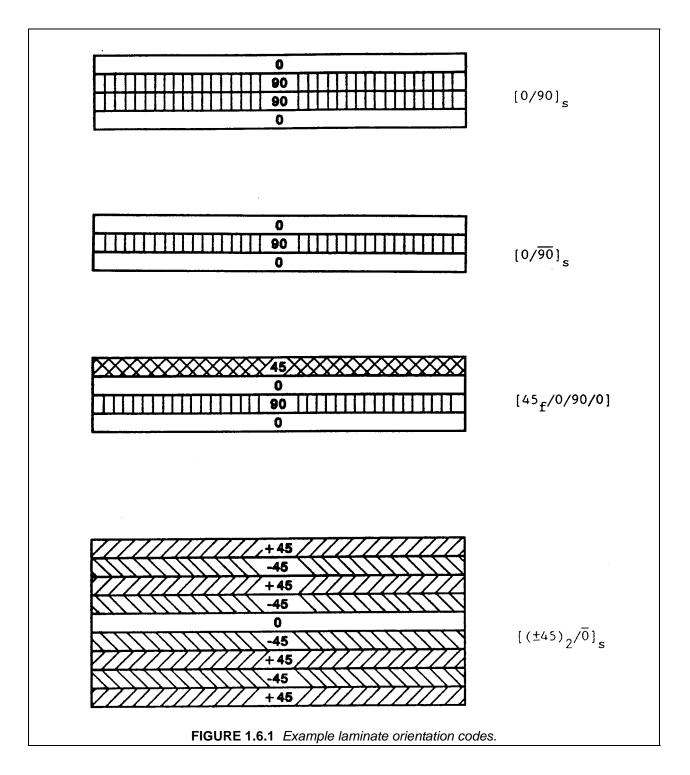
The materials systems codes which are used in the handbook consist of a fiber system code and a matrix material code separated by a virgule (/). The codes for the fiber and matrix materials appear in Tables 1.5.1(a) and (b).

TABLE 1.5.1(a) Fiber system codes.

AIO	Alumina
Ar	Aramid
В	Boron
С	Carbon
DGI	D-Glass
EGI	E-Glass
GI	Glass
Gr	Graphite
Li	Lithium
PAN	Polyacrylonitrile
PBT	Polybenzothiazole
Q	Quartz
Si	Silicon
SiC	Silicon carbide
SGI	S-Glass
Ti	Titanium
w	Tungsten
	-

 TABLE 1.5.1(b)
 Matrix material codes.

BMI	Bismaleimide
CE	Cyanate Ester
EP	Ероху
FC	Fluorocarbon
Р	Phenolic
PAI	Polyamide-imide
PBI	Polybenzimidazole
PEEK	Polyetheretherketone
PEI	Polyetherimide
PES	Polyethersulfone
PI	Polyimide
PPS	Polyphenylene sulfide
PSU	Polysulfone
SI	Silicone
TPES	Thermoplastic polyester


1.5.2 Index of materials

This section is reserved for future use.

1.6 MATERIAL ORIENTATION CODES

1.6.1 Laminate orientation codes

The purpose of a laminate orientation code is to provide a simple, easily understood method of describing the lay-up of a laminate. The laminate orientation code is based largely on the code used in the Advanced Composites Design Guide (Reference 1.6.1(a)). The following information and the examples in Figure 1.6.1 describe the laminate orientation code used in MIL-HDBK-17.

- 1. The orientation of each lamina with respect to the x-axis is indicated by the angle between the fiber direction and the x-axis. Positive angles are measured counter-clockwise from the x-axis when looking toward the lay-up surface (right-hand rule).
- 2. When indicating the lay-up of a weave, the angle is measured between the warp direction and the x-axis.

- 3. Orientations of successive laminae with different absolute values are separated by a virgule (/).
- 4. Two or more adjacent laminae with the same orientation are indicated by adding a subscript, to the angle of the first such lamina, equal to the number of repetitions of laminae with that orientation.
- 5. Laminae are listed in order from the first laid up to the last. Brackets are used to indicate the beginning and the end of the code.
- 6. A subscript of 's' is used if the first half of the lay-up is indicated and the second half is symmetric with the first. When a symmetric lay-up with an odd number of laminae is shown, the layer which is not repeated is indicated by overlining the angle of that lamina.
- 7. A repeated set of laminae are enclosed in parentheses and the number of repetitions of the set indicated by a subscript.
- 8. The convention used for indicating materials is no subscript for a tape ply and a subscript "f" for a weave.
- 9. The laminate code for a hybrid has the different materials contained in the laminate indicated by subscripts on the laminae.
- Since the majority of computer programs do not permit the use of subscripts and superscripts, the following modifications are recommended based on ASTM Committee E-49 guidelines (Reference 1.6.1(b)).
 - a. Subscript information will be preceded by a colon (:), e.g., [90/0:2/45]:s.
 - b. A bar over a ply (designating a non-repeated ply in a symmetric laminate) should be indicated by a backslash (\) after the ply, e.g., [0/45/90\]:s.

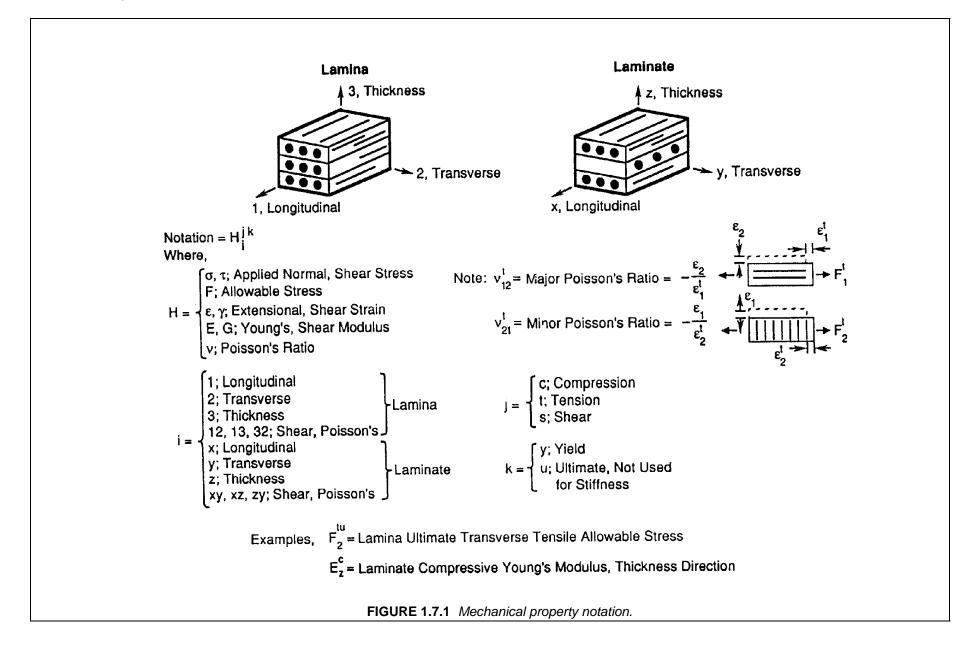
1.6.2 Braiding orientation codes

This section is reserved for future use.

1.7 SYMBOLS, ABBREVIATIONS, AND SYSTEMS OF UNITS

This section defines the symbols and abbreviations which are used within MIL-HDBK-17 and describes the system of units which is maintained. Common usage is maintained where possible. References 1.7(a) - (c) served as primary sources for this information.

1.7.1 Symbols and abbreviations


The symbols and abbreviations used in this document are defined in this section with the exception of statistical symbols. These latter symbols are defined in Chapter 8. The lamina/laminate coordinate axes used for all properties and a summary of the mechanical property notation are shown in Figure 1.7.1.

- The symbols f and m, when used as either subscripts or superscripts, always denote fiber and matrix, respectively.
- The type of stress (for example, cy compressive yield) is always used in the superscript position.
- Direction indicators (for example, x, y, z, 1, 2, 3, etc.) are always used in the subscript position.

- Ordinal indicators of laminae sequence (e.g., 1, 2, 3, etc.) are used in the superscript position and must be parenthesized to distinguish them from mathematical exponents.
- Other indicators may be used in either subscript or superscript position, as appropriate for clarity.
- Compound symbols (such as, basic symbols plus indicators) which deviate from these rules are shown in their specific form in the following list.

The following general symbols and abbreviations are considered standard for use in MIL-HDBK-17. Where exceptions are made, they are noted in the text and tables.

А	- (1) area (m²,in²)
	- (2) ratio of alternating stress to mean stress
	- (3) A-basis for mechanical property values
а	- (1) length dimension (mm,in)
	- (2) acceleration (m/sec ² ,ft/sec ²)
	- (3) amplitude
	- (4) crack or flaw dimension (mm,in)
В	- (1) B-basis for mechanical property values
	- (2) biaxial ratio
Btu	- British thermal unit(s)
b	- width dimension (mm,in), e.g., the width of a bearing or compressive panel normal to load,
	or breadth of beam cross-section
С	- (1) specific heat (kJ/kg °C,Btu/lb °F)
	- (2) Celsius
CF	- centrifugal force (N,lbf)
CPF	- crossply factor
CPT	- cured ply thickness (mm, in.)
CG	- (1) center of mass, "center of gravity"
	- (2) area or volume centroid
E	- centerline
c	- column buckling end-fixity coefficient
_	- honeycomb sandwich core depth (mm,in)
с срт	- cycles per minute
D	- (1) diameter (mm,in)
D	- (2) hole or fastener diameter (mm,in)
	- (3) plate stiffness (N-m,lbf-in)
d	- mathematical operator denoting differential
E	- modulus of elasticity in tension, average ratio of stress to strain for stress below propor-
L	tional limit (GPa,Msi)
E'	- storage modulus (GPa,Msi)
E"	- loss modulus (GPa,Msi)
E _c	- modulus of elasticity in compression, average ratio of stress to strain for stress below pro-
1 C	portional limit (GPa,Msi)
Г	- modulus of elasticity of honeycomb core normal to sandwich plane (GPa,Msi)
Ec	
E ^{sec}	- secant modulus (GPa,Msi)
E^{tan}	- tangent modulus (GPa,Msi)
e	- minimum distance from a hole center to the edge of the sheet (mm,in)
e/D	- ratio of edge distance to hole diameter (bearing strength)
F	- (1) stress (MPa,ksi)
Th	- (2) Fahrenheit
F ^b	- bending stress (MPa,ksi)
F ^{ccr}	- crushing or crippling stress (upper limit of column stress for failure) (MPa,ksi)
F^{su}	 ultimate stress in pure shear (this value represents the average shear stress over the cross-section) (MPa,ksi)

FAW	- fiber areal weight (g/m ² , lb/in ²)
FV	- fiber volume (%)
f	- (1) internal (or calculated) stress (MPa,ksi)
	- (2) stress applied to the gross flawed section (MPa,ksi)
	- (3) creep stress (MPa,ksi)
f^{c}	- internal (or calculated) compressive stress (MPa,ksi)
f_c	- (1) maximum stress at fracture (MPa,ksi)
-0	- (2) gross stress limit (for screening elastic fracture data (MPa,ksi)
ft	- foot, feet
G	- modulus of rigidity (shear modulus) (GPa,Msi)
GPa	- gigapascal(s)
g	- (1) gram(s)
8	- (2) acceleration due to gravity (m/s ² ,ft/s ²)
H/C	- honeycomb (sandwich)
h	- height dimension (mm,in) e.g. the height of a beam cross-section
hr	- hour(s)
I	- area moment of inertia (mm ⁴ ,in ⁴)
i	- slope (due to bending) of neutral plane in a beam, in radians
in.	- inch(es)
J	- (1) torsion constant (= I_p for round tubes) (m ⁴ ,in ⁴)
5	- (2) Joule
K	- (1) Kelvin
K	- (2) stress intensity factor (MPa/m,ksi/in)
	- (3) coefficient of thermal conductivity (W/m °C, Btu/ft ² /hr/in/°F)
	- (4) correction factor
	- (5) dielectric constant
V	
K _{app}	- apparent plane strain fracture toughness or residual strength (MPa/m,ksi/in)
K _c	- critical plane strain fracture toughness, a measure of fracture toughness at point of crack
	growth instability (MPa/m,ksi/in)
K _{Ic}	- plane strain fracture toughness (MPa/m,ksi/in)
K _N	- empirically calculated fatigue notch factor
K _s	- plate or cylinder shear buckling coefficient
K _t	- (1) theoretical elastic stress concentration factor
	- (2) t_w/c ratio in H/C sandwich
Kv	- dielectric strength (KV/mm, V/mil)
K_x, K_y	- plate or cylinder compressive buckling coefficient
k	- strain at unit stress (m/m,in/in)
L	- cylinder, beam, or column length (mm,in)
L'	- effective column length (mm,in)
lb	- pound
М	- applied moment or couple (N-m,in-lbf)
Mg	- megagram(s)
MPa	- megapascal(s)
MS	- military standard
M.S.	- margin of safety
MW	- molecular weight
MWD	- molecular weight distribution
m	- (1) mass (kg,lb)
	- (2) number of half wave lengths
	- (3) metre
	- (4) slope
Ν	- (1) number of fatigue cycles to failure
	- (2) number of laminae in a laminate
	 - (3) distributed in-plane forces on a panel (lbf/in)
	- (4) Newton
	- (5) normalized

NA	- neutral axis
n	- (1) number of times in a set
	 - (2) number of half or total wavelengths
	- (3) number of fatigue cycles endured
Р	- (1) applied load (N,lbf)
	- (2) exposure parameter
	- (3) probability
	- (4) specific resistance (Ω)
\mathbf{P}^{u}	 test ultimate load, (N,lb per fastener)
$\mathbf{P}^{\mathbf{y}}$	 test yield load, (N,lb per fastener)
р	- normal pressure (Pa,psi)
psi	- pounds per square inch
Q	- area static moment of a cross-section (mm ³ ,in ³)
q	- shear flow (N/m,lbf/in)
R	 (1) algebraic ratio of minimum load to maximum load in cyclic loading
	- (2) reduced ratio
RA	- reduction of area
RH	- relative humidity
RMS	- root-mean-square
RT	- room temperature
r	- (1) radius (mm,in)
	- (2) root radius (mm,in)
	- (3) reduced ratio (regression analysis)
S	- (1) shear force (N,lbf)
	- (2) nominal stress in fatigue (MPa,ksi)
_	- (3) S-basis for mechanical property values
\mathbf{S}_{a}	- stress amplitude in fatigue (MPa,ksi)
Se	- fatigue limit (MPa,ksi)
Sm	- mean stress in fatigue (MPa,ksi)
S _{max}	- highest algebraic value of stress in the stress cycle (MPa,ksi)
S _{min}	- lowest algebraic value of stress in the stress cycle (MPa,ksi)
S _R	- algebraic difference between the minimum and maximum stresses in one cycle (MPa,ksi)
S.F.	- safety factor
S	- (1) arc length (mm,in)
т	- (2) H/C sandwich cell size (mm,in)
Т	- (1) temperature (°C,°F)
	(2) applied targingal moment (N m in lbf)
т	- (2) applied torsional moment (N-m,in-lbf)
T _d	- thermal decomposition temperature (°C,°F)
T _F	 thermal decomposition temperature (°C,°F) exposure temperature (°C,°F)
T _F T _g	 thermal decomposition temperature (°C,°F) exposure temperature (°C,°F) glass transition temperature(°C,°F)
T _F T _g T _m	 thermal decomposition temperature (°C,°F) exposure temperature (°C,°F) glass transition temperature(°C,°F) melting temperature (°C,°F)
T _F T _g	 thermal decomposition temperature (°C,°F) exposure temperature (°C,°F) glass transition temperature(°C,°F) melting temperature (°C,°F) (1) thickness (mm,in)
T _F T _g T _m	 thermal decomposition temperature (°C,°F) exposure temperature (°C,°F) glass transition temperature(°C,°F) melting temperature (°C,°F) (1) thickness (mm,in) (2) exposure time (s)
$egin{array}{c} T_{ m F} \ T_{ m g} \ T_{ m m} \ t \end{array}$	 thermal decomposition temperature (°C,°F) exposure temperature (°C,°F) glass transition temperature(°C,°F) melting temperature (°C,°F) (1) thickness (mm,in) (2) exposure time (s) (3) elapsed time (s)
T _F T _g T _m	 thermal decomposition temperature (°C,°F) exposure temperature (°C,°F) glass transition temperature(°C,°F) melting temperature (°C,°F) (1) thickness (mm,in) (2) exposure time (s) (3) elapsed time (s) (1) volume (mm³,in³)
T _F T _g T _m t	 thermal decomposition temperature (°C,°F) exposure temperature (°C,°F) glass transition temperature(°C,°F) melting temperature (°C,°F) (1) thickness (mm,in) (2) exposure time (s) (3) elapsed time (s) (1) volume (mm³,in³) (2) shear force (N,lbf)
$egin{array}{c} T_{ m F} \ T_{ m g} \ T_{ m m} \ t \end{array}$	 thermal decomposition temperature (°C,°F) exposure temperature (°C,°F) glass transition temperature(°C,°F) melting temperature (°C,°F) (1) thickness (mm,in) (2) exposure time (s) (3) elapsed time (s) (1) volume (mm³,in³) (2) shear force (N,lbf) (1) weight (N,lbf)
T _F T _g T _m t	 thermal decomposition temperature (°C,°F) exposure temperature (°C,°F) glass transition temperature(°C,°F) melting temperature (°C,°F) (1) thickness (mm,in) (2) exposure time (s) (3) elapsed time (s) (1) volume (mm³,in³) (2) shear force (N,lbf) (1) weight (N,lbf) (2) width (mm,in)
T _F T _g T _m t V	 thermal decomposition temperature (°C,°F) exposure temperature (°C,°F) glass transition temperature(°C,°F) melting temperature (°C,°F) (1) thickness (mm,in) (2) exposure time (s) (3) elapsed time (s) (1) volume (mm³,in³) (2) shear force (N,lbf) (1) weight (N,lbf) (2) width (mm,in) (3) Watt
T _F T _g T _m t V W	 thermal decomposition temperature (°C,°F) exposure temperature (°C,°F) glass transition temperature(°C,°F) melting temperature (°C,°F) (1) thickness (mm,in) (2) exposure time (s) (3) elapsed time (s) (1) volume (mm³,in³) (2) shear force (N,lbf) (1) weight (N,lbf) (2) width (mm,in) (3) Watt distance along a coordinate axis
T _F T _g T _m t V W	 thermal decomposition temperature (°C,°F) exposure temperature (°C,°F) glass transition temperature(°C,°F) melting temperature (°C,°F) (1) thickness (mm,in) (2) exposure time (s) (3) elapsed time (s) (1) volume (mm³,in³) (2) shear force (N,lbf) (1) weight (N,lbf) (2) width (mm,in) (3) Watt distance along a coordinate axis nondimensional factor relating component geometry and flaw size
T _F T _g T _m t V W	 thermal decomposition temperature (°C, °F) exposure temperature (°C, °F) glass transition temperature(°C, °F) melting temperature (°C, °F) (1) thickness (mm,in) (2) exposure time (s) (3) elapsed time (s) (1) volume (mm³,in³) (2) shear force (N,lbf) (1) weight (N,lbf) (2) width (mm,in) (3) Watt distance along a coordinate axis nondimensional factor relating component geometry and flaw size (1) deflection (due to bending) of elastic curve of a beam (mm,in)
T _F T _g T _m t V W	 thermal decomposition temperature (°C, °F) exposure temperature (°C, °F) glass transition temperature(°C, °F) melting temperature (°C, °F) (1) thickness (mm,in) (2) exposure time (s) (3) elapsed time (s) (1) volume (mm³,in³) (2) shear force (N,lbf) (1) weight (N,lbf) (2) width (mm,in) (3) Watt distance along a coordinate axis nondimensional factor relating component geometry and flaw size (1) deflection (due to bending) of elastic curve of a beam (mm,in) (2) distance from neutral axis to given point
T _F T _g T _m t V W W	 thermal decomposition temperature (°C,°F) exposure temperature (°C,°F) glass transition temperature (°C,°F) melting temperature (°C,°F) (1) thickness (mm,in) (2) exposure time (s) (3) elapsed time (s) (1) volume (mm³,in³) (2) shear force (N,lbf) (1) weight (N,lbf) (2) width (mm,in) (3) Watt distance along a coordinate axis nondimensional factor relating component geometry and flaw size (1) deflection (due to bending) of elastic curve of a beam (mm,in) (2) distance from neutral axis to given point (3) distance along a coordinate axis
T _F T _g T _m t V W	 thermal decomposition temperature (°C, °F) exposure temperature (°C, °F) glass transition temperature(°C, °F) melting temperature (°C, °F) (1) thickness (mm,in) (2) exposure time (s) (3) elapsed time (s) (1) volume (mm³,in³) (2) shear force (N,lbf) (1) weight (N,lbf) (2) width (mm,in) (3) Watt distance along a coordinate axis nondimensional factor relating component geometry and flaw size (1) deflection (due to bending) of elastic curve of a beam (mm,in) (2) distance from neutral axis to given point

γ	- shear strain (m/m,in/in)
Δ	- difference (used as prefix to quantitative symbols)
δ	- elongation or deflection (mm,in)
ε ^e	- strain (m/m,in/in)
ϵ^{p}	- elastic strain (m/m,in/in)
3	- plastic strain (m/m,in/in)
μ	- permeability
η	 plasticity reduction factor
[η]	- intrinsic viscosity
η*	 dynamic complex viscosity
V	- Poisson's ratio
ρ	- (1) density (kg/m ³ ,lb/in ³)
	- (2) radius of gyration (mm,in)
$\dot{ ho_{ m c}}$	- H/C sandwich core density (kg/m ³ ,lb/in ³)
Σ	- total, summation
σ	- standard deviation
$\sigma_{ij}, \ au_{ij}$	 stress in j direction on surface whose outer normal is in i direction (MPa,ksi)
Т	- applied shear stress (MPa,ksi)
ω	- angular velocity (radians/s)
∞	- infinity

1.7.1.1 Constituent properties

The following symbols apply specifically to the constituent properties of a typical composite material.

- $\mathbf{E}^{\mathbf{f}}$ - Young's modulus of filament material (MPa,ksi)
- E^{m} - Young's modulus of matrix material (MPa,ksi)
- Young's modulus of impregnated glass scrim cloth in the filament direction or in the warp di-Eg rection of a fabric (MPa,ksi)

(i, j = 1, 2, 3 or x, y, z)

- Young's modulus of impregnated glass scrim cloth transverse to the filament direction or to the Ev warp direction in a fabric (MPa,ksi)
- \mathbf{G}^{f} - shear modulus of filament material (MPa,ksi)
- \mathbf{G}^{m} - shear modulus of matrix (MPa,ksi)
- shear modulus of impregnated glass scrim cloth (MPa,ksi) G_{xv}^g
- shear modulus of sandwich core along X-axis (MPa,ksi) G_{cx}
- Gcy - shear modulus of sandwich core along Y-axis (MPa,ksi)
- filament length (mm,in) l
- α^{f} - coefficient of thermal expansion for filament material (m/m/°C,in/in/°F)
- $\alpha^{\,\mathrm{m}}$ - coefficient of thermal expansion for matrix material (m/m/°C,in/in/°F)
- coefficient of thermal expansion of impregnated glass scrim cloth in the filament direction or in $\alpha_{\rm x}^{\rm g}$ the warp direction of a fabric (m/m/°C,in/in/°F)
- coefficient of thermal expansion of impregnated glass scrim cloth transverse to the filament di- $\alpha_{\rm v}^{\rm g}$ rection or to the warp direction in a fabric (m/m/°C,in/in/°F)
- $v^{\rm f}$ - Poisson's ratio of filament material
- $\nu^{\rm m}$ - Poisson's ratio of matrix material
- glass scrim cloth Poisson's ratio relating to contraction in the transverse (or fill) direction as a $v_{\rm xv}^{\rm g}$ result of extension in the longitudinal (or warp) direction

- v_{Vx}^{g} glass scrim cloth Poisson's ratio relating to contraction in the longitudinal (or warp) direction as a result of extension in the transverse (or fill) direction
 - applied axial stress at a point, as used in micromechanics analysis (MPa,ksi)
- σ - applied shear stress at a point, as used in micromechanics analysis (MPa,ksi) τ

1.7.1.2 Laminae and laminates

The following symbols, abbreviations, and notations apply to composite laminae and laminates. At the present time the focus in MIL-HDBK-17 is on laminae properties. However, commonly used nomenclature for both laminae and laminates are included here to avoid potential confusion.

A_{ij} (i,j = 1,2,6)	- extensional rigidities (N/m,lbf/in)
B_{ij} (i,j = 1,2,6)	- coupling matrix (N,lbf)
C_{ij} (i,j = 1,2,6)	 elements of stiffness matrix (Pa,psi)
D_x, D_y	- flexural rigidities (N-m,lbf-in)
D_{xy}	 twisting rigidity (N-m,lbf-in)
D_{ij} (i,j = 1,2,6)	- flexural rigidities (N-m,lbf-in)
E_1	- Young's modulus of lamina parallel to filament or warp direction (GPa,Msi)
E_2	- Young's modulus of lamina transverse to filament or warp direction (GPa,Msi)
Ex	- Young's modulus of laminate along x reference axis (GPa,Msi)
Ey	- Young's modulus of laminate along y reference axis (GPa,Msi)
G ₁₂	- shear modulus of lamina in 12 plane (GPa,Msi)
G _{xy}	- shear modulus of laminate in xy reference plane (GPa,Msi)
h _i	- thickness of i th ply or lamina (mm,in)
M_x, M_y, M_{xy}	 bending and twisting moment components (N-m/m, in-lbf/in in plate and shell analy- sis)
n _f	- number of filaments per unit length per lamina
Q_x, Q_y	 shear force parallel to z axis of sections of a plate perpendicular to x and y axes, re- spectively (N/m,lbf/in)
$Q_{ij}(i,j = 1,2,6)$	 reduced stiffness matrix (Pa,psi)
u_x, u_y, u_z	 components of the displacement vector (mm,in)
$u^o_x,\ u^o_y,\ u^o_z$	- components of the displacement vector at the laminate's midsurface (mm,in)
V_v	 void content (% by volume)
$V_{\rm f}$	 filament content or fiber volume (% by volume)
V_{g}	- glass scrim cloth content (% by volume)
V _m	- matrix content (% by volume)
V_x, V_y	- edge or support shear force (N/m,lbf/in)
$W_{\rm f}$	- filament content (% by weight)
Wg	- glass scrim cloth content (% by weight)
W _m	- matrix content (% by weight)
W _s	- weight of laminate per unit surface area (N/m ² ,lbf/in ²)
α_1	 lamina coefficient of thermal expansion along 1 axis (m/m/°C,in/in/°F) lamina coefficient of thermal expansion along 2 axis (m/m/°C,in/in/°F)
α_2	,
$\alpha_{\rm x}$	 laminate coefficient of thermal expansion along general reference x axis (m/m/°C, in/in/°F)
lpha y	 laminate coefficient of thermal expansion along general reference y axis (m/m/°C, in/in/°F)
lpha _{xy}	 laminate shear distortion coefficient of thermal expansion (m/m/°C,in/in/°F)
θ	- angular orientation of a lamina in a laminate, i.e., angle between 1 and x axes (°)
λ_{xy}	- product of v_{xy} and v_{yx}
v_{12}	- Poisson's ratio relating contraction in the 2 direction as a result of extension in the 1 direction ¹

¹The convention for Poisson's ratio should be checked before comparing different sources as different conventions are used.

<i>V</i> ₂₁	- Poisson's ratio relating contraction in the 1 direction as a result of extension in the 2 direction ¹
V _{xy}	- Poisson's ratio relating contraction in the y direction as a result of extension in the x direction ¹
<i>V</i> _{yx}	- Poisson's ratio relating contraction in the x direction as a result of extension in the y direction ¹
$ ho_{ m c}$	 density of a single lamina (kg/m³,lb/in³)
$\frac{\rho_{\rm c}}{\rho_{\rm c}}$	- density of a laminate (kg/m ³ ,lb/in ³)
φ	- (1) general angular coordinate, (°) - (2) angle between x and load axes in off-axis loading (°)

1.7.1.3 Subscripts

The following subscript notations are considered standard in MIL-HDBK-17.

1, 2, 3	- laminae natural orthogonal coordinates (1 is filament or warp direction)
А	- axial
а	- (1) adhesive
	- (2) alternating
app	- apparent
byp	- bypass
с	 composite system, specific filament/matrix composition. Composite as a whole, contrasted to individual constituents. Also, sandwich core when used in conjunction with prime (') (4) critical
of	- (4) critical
cf	- centrifugal force
e eff	- fatigue or endurance - effective
eq f	- equivalent - filament
-	- glass scrim cloth
g H	- hoop
i	- i th position in a sequence
L	- lateral
m	- (1) matrix
	- (2) mean
max	- maximum
min	- minimum
n	- (1) n th (last) position in a sequence
	- (2) normal
р	- polar
S	- symmetric
st	- stiffener
Т	- transverse
t	- value of parameter at time t
x, y, z	- general coordinate system
Σ	- total, or summation
0	- initial or reference datum
()	 format for indicating specific, temperature associated with term in parentheses. RT - room temperature (21°C,70°F); all other temperatures in °F unless specified.

1.7.1.4 Superscripts

The following superscript notations are considered standard in MIL-HDBK-17.

b - bending

br	- bearing
с	- (1) compression
	- (2) creep
сс	- compressive crippling
cr	- compressive buckling
e	- elastic
f	- filament
flex	- flexure
g	- glass scrim cloth
is	- interlaminar shear
(i)	- i th ply or lamina
lim	 limit, used to indicate limit loading
m	- matrix
ohc	- open hole compression
oht	- open hole tension
р	- plastic
pl	- proportional limit
rup	- rupture
S	- shear
scr	- shear buckling
sec	- secant (modulus)
so	- offset shear
Т	- temperature or thermal
t	- tension
tan	- tangent (modulus)
u	- ultimate
У	- yield
	- secondary (modulus), or denotes properties of H/C core when used with subscript c
CAI	- compression after impact

1.7.1.5 Acronyms

The following acronyms are used in MIL-HDBK-17.

CV CVD DCB DDA DGI DLL DMA DOD DSC DTA DTRC EGI ENF EOL EP ESCA ESR ETW FAA FC FFF FGRP FMECA FOD FTIR FWC GC GI Gr GSCS HDT HPLC ICAP IITRI IR ISS	 foreign object damage Fourier transform infrared spectroscopy finite width correction factor gas chromatography glass graphite Generalized Self Consistent Scheme heat distortion temperature high performance liquid chromatography inductively coupled plasma emission Illinois Institute of Technology Research Institute infrared spectroscopy ion scattering spectroscopy
GSCS HDT	 Generalized Self Consistent Scheme heat distortion temperature
ICAP IITRI	inductively coupled plasma emissionIllinois Institute of Technology Research Institute
Li LPT LSS	 lithium laminate plate theory laminate stacking sequence
MMB MOL MS	 mixed mode bending material operational limit mass spectroscopy
MSDS MTBF NAS	- material safety data sheet - Mean Time Between Failure - National Aerospace Standard
NASA NDI NMR P	 National Aeronautics and Space Administration nondestructive inspection nuclear magnetic resonance
p Pai Pan Pbi	- phenolic - polyamide-imide - polyacrylonitrile - polybenzimidazole
PBT PEEK	- polybenzothiazole - polyether ether ketone

PES- polyethersulfonePI- polyimidePPS- polyphenylene sulfidePSU- polysulfoneQ- quartzRDS- rheological dynamic spectroscopyRH- relative humidityRT- room temperatureRTA- room temperature ambientRTD- room temperature dryRTM- resin transfer molding
PPS- polyphenylene sulfidePSU- polysulfoneQ- quartzRDS- rheological dynamic spectroscopyRH- relative humidityRT- room temperatureRTA- room temperature ambientRTD- room temperature dryRTM- resin transfer molding
PSU- polysulfoneQ- quartzRDS- rheological dynamic spectroscopyRH- relative humidityRT- room temperatureRTA- room temperature ambientRTD- room temperature dryRTM- resin transfer molding
Q- quartzRDS- rheological dynamic spectroscopyRH- relative humidityRT- room temperatureRTA- room temperature ambientRTD- room temperature dryRTM- resin transfer molding
RDS- rheological dynamic spectroscopyRH- relative humidityRT- room temperatureRTA- room temperature ambientRTD- room temperature dryRTM- resin transfer molding
RH- relative humidityRT- room temperatureRTA- room temperature ambientRTD- room temperature dryRTM- resin transfer molding
RT- room temperatureRTA- room temperature ambientRTD- room temperature dryRTM- resin transfer molding
RTA- room temperature ambientRTD- room temperature dryRTM- resin transfer molding
RTM - resin transfer molding
SACMA - Suppliers of Advanced Composite Materials Association
SAE - Society of Automotive Engineers
SANS - small-angle neutron scattering spectroscopy
SEC - size-exclusion chromatography SEM - scanning electron microscopy
SEM - scanning electron microscopy SFC - supercritical fluid chromatography
Si - silicon
SI - International System of Units (Le Système International d'Unités)
SiC - silicon carbide
SGI - S-glass
SIMS - secondary ion mass spectroscopy
TBA - torsional braid analysis
TEM - transmission electron microscopy
TGA - thermogravimetric analysis
Ti - titanium
TLC - thin-layer chromatography
TMA - thermal mechanical analysis TOS - thermal oxidative stability
TPES - thermoplastic polyester
TVM - transverse microcrack
UDC - unidirectional fiber composite
VNB - V-notched beam
W - tungsten
XPS - X-ray photoelectron spectroscopy

1.7.2 System of units

To comply with Department of Defense Instructive 5000.2, Part 6, Section M, "Use of the Metric System," dated February 23, 1991, the data in MIL-HDBK-17 are generally presented in both the International System of Units (SI units) and the U. S. Customary (English) system of units. ASTM E 380, Standard for Metric Practice, provides guidance for the application for SI units which are intended as a basis for worldwide standardization of measurement units (Reference 1.7.2(a)). Further guidelines on the use of the SI system of units and conversion factors are contained in the following publications (References 1.7.2(b) - (e)):

- (1) DARCOM P 706-470, Engineering Design Handbook: Metric Conversion Guide, July 1976.
- (2) NBS Special Publication 330, "The International System of Units (SI)," National Bureau of Standards, 1986 edition.
- (3) NBS Letter Circular LC 1035, "Units and Systems of Weights and Measures, Their Origin, Development, and Present Status," National Bureau of Standards, November 1985.

(4) NASA Special Publication 7012, "The International System of Units Physical Constants and Conversion Factors", 1964.

English to SI conversion factors pertinent to MIL-HDBK-17 data are contained in Table 1.7.2.

To convert from	to	Multiply by
Btu (thermochemical)/in ² -s	watt/meter ² (W/m ²)	1.634 246 E+06
Btu-in/(s-ft ² -°F)	W/(m K)	5.192 204 E+02
degree Fahrenheit	degree Celsius (°C)	T = (T - 32)/1.8
degree Fahrenheit	kelvin (K)	T = (T + 459.67)/1.8
foot	meter (m)	3.048 000 E-01
ft ²	m ²	9.290 304 E-02
foot/second	meter/second (m/s)	3.048 000 E-01
ft/s ²	m/s ²	3.048 000 E-01
inch	meter (m)	2.540 000 E-02
in. ²	meter ^{2`} (m ²) m ³	6.451 600 E-04
in. ³	m ³	1.638 706 E-05
kilogram-force (kgf)	newton (N)	9.806 650 E+00
kgf/m ²	pascal (Pa)	9.806 650 E+00
kip (1000_lbf)	newton (N)	4.448 222 E+03
ksi (kip/in²)	MPa	6.894 757 E+00
lbf-in	N-m	1.129 848 E-01
lbf-ft	N-m	1.355 818 E+00
lbf/in ² (psi)	pascal (Pa)	6.894 757 E+03
lb/in ²	gm/m²	7.030 696 E+05
lb/in ³	kg/m ³	2.767 990 E+04
Msi (10 ⁶ psi)	GPa	6.894 757 E+00
pound-force (lbf)	newton (N)	4.488 222 E+00
pound-mass (lb avoirdupois)	kilogram (kg)	4.535 924 E-01
torr	pascal (Pa)	1.333 22 E+02

TABLE 172 English to SI conversion factors

The letter "E" following the conversion factor stands for exponent and the two * digits after the letter "E" indicate the power of 10 by which the number is to be multiplied.

1.8 DEFINITIONS

The following definitions are used within MIL-HDBK-17. This glossary of terms is not totally comprehensive but it does represent nearly all commonly used terms. Where exceptions are made, they are noted in the text and tables. For ease of identification the definitions have been organized alphabetically.

A-Basis (or A-Value) -- A statistically-based material property; a 95% lower confidence bound on the first percentile of a specified population of measurements. Also a 95% lower tolerance bound for the upper 99% of a specified population.

MIL-HDBK-17-2F

Volume 2, Chapter 1 General Information

A-Stage -- An early stage in the reaction of thermosetting resins in which the material is still soluble in certain liquids and may be liquid or capable of becoming liquid upon heating. (Sometimes referred to as **resol**.)

Absorption -- A process in which one material (the absorbent) takes in or absorbs another (the absorbate).

Accelerator -- A material which, when mixed with a catalyzed resin, will speed up the chemical reaction between the catalyst and the resin.

Accuracy -- The degree of conformity of a measured or calculated value to some recognized standard or specified value. Accuracy involves the systematic error of an operation.

Addition Polymerization -- Polymerization by a repeated addition process in which monomers are linked together to form a polymer without splitting off of water or other simple molecules.

Adhesion -- The state in which two surfaces are held together at an interface by forces or interlocking action or both.

Adhesive -- A substance capable of holding two materials together by surface attachment. In the handbook, the term is used specifically to designate structural adhesives, those which produce attachments capable of transmitting significant structural loads.

ADK -- Notation used for the k-sample Anderson-Darling statistic, which is used to test the hypothesis that k batches have the same distribution.

Aliquot -- A small, representative portion of a larger sample.

Aging -- The effect, on materials, of exposure to an environment for a period of time; the process of exposing materials to an environment for an interval of time.

Ambient -- The surrounding environmental conditions such as pressure or temperature.

Anelasticity -- A characteristic exhibited by certain materials in which strain is a function of both stress and time, such that, while no permanent deformations are involved, a finite time is required to establish equilibrium between stress and strain in both the loading and unloading directions.

Angleply -- Same as Crossply.

Anisotropic -- Not isotropic; having mechanical and/or physical properties which vary with direction relative to natural reference axes inherent in the material.

Aramid -- A manufactured fiber in which the fiber-forming substance consisting of a long-chain synthetic aromatic polyamide in which at least 85% of the amide (-CONH-) linkages are attached directly to two aromatic rings.

Areal Weight of Fiber -- The weight of fiber per unit area of prepreg. This is often expressed as grams per square meter. See Table 1.7.2 for conversion factors.

Artificial Weathering -- Exposure to laboratory conditions which may be cyclic, involving changes in temperature, relative humidity, radiant energy and any other elements found in the atmosphere in various geographical areas.

Aspect Ratio -- In an essentially two-dimensional rectangular structure (e.g., a panel), the ratio of the long dimension to the short dimension. However, in compression loading, it is sometimes considered to

be the ratio of the load direction dimension to the transverse dimension. Also, in fiber micro-mechanics, it is referred to as the ratio of length to diameter.

Autoclave -- A closed vessel for producing an environment of fluid pressure, with or without heat, to an enclosed object which is undergoing a chemical reaction or other operation.

Autoclave Molding -- A process similar to the pressure bag technique. The lay-up is covered by a pressure bag, and the entire assembly is placed in an autoclave capable of providing heat and pressure for curing the part. The pressure bag is normally vented to the outside.

Axis of Braiding -- The direction in which the braided form progresses.

B-Basis (or B-Value) -- A statistically-based material property; a 95% lower confidence bound on the tenth percentile of a specified population of measurements. Also a 95% lower tolerance bound for the upper 90% of a specified population. (See Volume 1, Section 8.1.4)

B-Stage -- An intermediate stage in the reaction of a thermosetting resin in which the material softens when heated and swells when in contact with certain liquids but does not entirely fuse or dissolve. Materials are usually precured to this stage to facilitate handling and processing prior to final cure. (Sometimes referred to as **resitol**.)

Bag Molding -- A method of molding or laminating which involves the application of fluid pressure to a flexible material which transmits the pressure to the material being molded or bonded. Fluid pressure usually is applied by means of air, steam, water or vacuum.

Balanced Laminate -- A composite laminate in which all identical laminae at angles other than 0 degrees and 90 degrees occur only in ± pairs (not necessarily adjacent).

Batch (or Lot) -- For fibers and resins, a quantity of material formed during the same process and having identical characteristics throughout. For prepregs, laminae, and laminates, material made from one batch of fiber and one batch of resin.

Bearing Area -- The product of the pin diameter and the specimen thickness.

Bearing Load -- A compressive load on an interface.

Bearing Yield Strength -- The bearing stress at which a material exhibits a specified limiting deviation from the proportionality of bearing stress to bearing strain.

Bend Test -- A test of ductility by bending or folding, usually with steadily applied forces. In some instances the test may involve blows to a specimen having a cross section that is essentially uniform over a length several times as great as the largest dimension of the cross section.

Binder -- A bonding resin used to hold strands together in a mat or preform during manufacture of a molded object.

Binomial Random Variable -- The number of successes in independent trials where the probability of success is the same for each trial.

Birefringence -- The difference between the two principal refractive indices (of a fiber) or the ratio between the retardation and thickness of a material at a given point.

Bleeder Cloth -- A nonstructural layer of material used in the manufacture of composite parts to allow the escape of excess gas and resin during cure. The bleeder cloth is removed after the curing process and is not part of the final composite.

Bobbin -- A cylinder or slightly tapered barrel, with or without flanges, for holding tows, rovings, or yarns.

Bond -- The adhesion of one surface to another, with or without the use of an adhesive as a bonding agent.

Braid -- A system of three or more yarns which are interwoven in such a way that no two yarns are twisted around each other.

Braid Angle -- The acute angle measured from the axis of braiding.

Braid, Biaxial -- Braided fabric with two-yarn systems, one running in the $+\theta$ direction, the other in the $-\theta$ direction as measured from the axis of braiding.

Braid Count -- The number of braiding yarn crossings per inch measured along the axis of a braided fabric.

Braid, Diamond -- Braided fabric with an over one, under one weave pattern, (1 x 1).

Braid, Flat -- A narrow bias woven tape wherein each yarn is continuous and is intertwined with every other yarn in the system without being intertwined with itself.

Braid, Hercules -- A braided fabric with an over three, under three weave pattern, (3 x 3).

Braid, Jacquard -- A braided design made with the aid of a jacquard machine, which is a shedding mechanism by means of which a large number of ends may be controlled independently and complicated patterns produced.

Braid, Regular -- A braided fabric with an over two, under two weave pattern (2 x 2).

Braid, Square -- A braided pattern in which the yarns are formed into a square pattern.

Braid, Two-Dimensional -- Braided fabric with no braiding yarns in the through thickness direction.

Braid, Three-Dimensional -- Braided fabric with one or more braiding yarns in the through thickness direction.

Braid, Triaxial -- A biaxial braided fabric with laid in yarns running in the axis of braiding.

Braiding -- A textile process where two or more strands, yarns or tapes are intertwined in the bias direction to form an integrated structure.

Broadgoods -- A term loosely applied to prepreg material greater than about 12 inches in width, usually furnished by suppliers in continuous rolls. The term is currently used to designate both collimated uniaxial tape and woven fabric prepregs.

Buckling (Composite) -- A mode of structural response characterized by an out-of-plane material deflection due to compressive action on the structural element involved. In advanced composites, buckling may take the form not only of conventional general instability and local instability but also a micro-instability of individual fibers.

Bundle -- A general term for a collection of essentially parallel filaments or fibers.

C-Stage -- The final stage of the curing reaction of a thermosetting resin in which the material has become practically infusable and insoluble. (Normally considered fully cured and sometimes referred to as **resite**.)

Capstan -- A friction type take-up device which moves braided fabric away from the fell. The speed of which determines the braid angle.

Carbon Fibers -- Fibers produced by the pyrolysis of organic precursor fibers such as rayon, polyacrylonitrile (PAN), and pitch in an inert atmosphere. The term is often used interchangeably with "graphite"; however, carbon fibers and graphite fibers differ in the temperature at which the fibers are made and heat-treated, and the amount of carbon produced. Carbon fibers typically are carbonized at about 2400°F (1300°C) and assay at 93 to 95% carbon, while graphite fibers are graphitized at 3450 to 5450°F (1900 to 3000°C) and assay at more than 99% elemental carbon.

Carrier -- A mechanism for carrying a package of yarn through the braid weaving motion. A typical carrier consists of a bobbin spindle, a track follower, and a tensioning device.

Caul Plates -- Smooth metal plates, free of surface defects, the same size and shape as a composite lay-up, used immediately in contact with the lay-up during the curing process to transmit normal pressure and to provide a smooth surface on the finished laminate.

Censoring -- Data is right (left) censored at M, if, whenever an observation is less than or equal to M (greater than or equal to M), the actual value of the observation is recorded. If the observation exceeds (is less than) M, the observation is recorded as M.

Chain-Growth Polymerization -- One of the two principal polymerization mechanisms. In chaingrowth polymerization, the reactive groups are continuously regenerated during the growth process. Once started, the polymer molecule grows rapidly by a chain of reactions emanating from a particular reactive initiator which may be a free radical, cation or anion.

Chromatogram -- A plot of detector response against peak volume of solution (eluate) emerging from the system for each of the constituents which have been separated.

Circuit -- One complete traverse of the fiber feed mechanism of a winding machine; one complete traverse of a winding band from one arbitrary point along the winding path to another point on a plane through the starting point and perpendicular to the axis.

Cocuring -- The act of curing a composite laminate and simultaneously bonding it to some other prepared surface during the same cure cycle (see **Secondary Bonding**).

Coefficient of Linear Thermal Expansion -- The change in length per unit length resulting from a one-degree rise in temperature.

Coefficient of Variation -- The ratio of the population (or sample) standard deviation to the population (or sample) mean.

Collimated -- Rendered parallel.

Compatible -- The ability of different resin systems to be processed in contact with each other without degradation of end product properties. (See **Compatible**, Volume 1, Section 8.1.4)

Composite Class -- As used in the handbook, a major subdivision of composite construction in which the class is defined by the fiber system and the matrix class, e.g., organic-matrix filamentary laminate.

Composite Material -- Composites are considered to be combinations of materials differing in composition or form on a macroscale. The constituents retain their identities in the composite; that is, they do not dissolve or otherwise merge completely into each other although they act in concert. Normally, the components can be physically identified and exhibit an interface between one another.

Compound -- An intimate mixture of polymer or polymers with all the materials necessary for the finished product.

Condensation Polymerization -- This is a special type of step-growth polymerization characterized by the formation of water or other simple molecules during the stepwise addition of reactive groups.

Confidence Coefficient -- See Confidence Interval.

Confidence Interval -- A confidence interval is defined by a statement of one of the following forms:

(1) $P\{a < \theta\} \# 1 - \alpha$ (2) $P\{\theta < b\} \# 1 - \alpha$ (3) $P\{a < \theta < b\} \# 1 - \alpha$

where $1-\alpha$ is called the confidence coefficient. A statement of type (1) or (2) is called a one-sided confidence interval and a statement of type (3) is called a two-sided confidence interval. In (1) a is a lower confidence limit and in (2) b is an upper confidence limit. With probability at least $1-\alpha$, the confidence interval will contain the parameter θ .

Constituent -- In general, an element of a larger grouping. In advanced composites, the principal constituents are the fibers and the matrix.

Continuous Filament -- A yarn or strand in which the individual filaments are substantially the same length as the strand.

Coupling Agent -- Any chemical substance designed to react with both the reinforcement and matrix phases of a composite material to form or promote a stronger bond at the interface. Coupling agents are applied to the reinforcement phase from an aqueous or organic solution or from a gas phase, or added to the matrix as an integral blend.

Coverage -- The measure of the fraction of surface area covered by the braid.

Crazing -- Apparent fine cracks at or under the surface of an organic matrix.

Creel -- A framework arranged to hold tows, rovings, or yarns so that many ends can be withdrawn smoothly and evenly without tangling.

Creep -- The time dependent part of strain resulting from an applied stress.

Creep, Rate Of -- The slope of the creep-time curve at a given time.

Crimp -- The undulations induced into a braided fabric via the braiding process.

Crimp Angle -- The maximum acute angle of a single braided yarn's direction measured from the average axis of tow.

Crimp Exchange -- The process by which a system of braided yarns reaches equilibrium when put under tension or compression.

Critical Value(s) -- When testing a one-sided statistical hypothesis, a critical value is the value such that, if the test statistic is greater than (less than) the critical value, the hypothesis is rejected. When testing a two-sided statistical hypothesis, two critical values are determined. If the test statistic is either less than the smaller critical value or greater than the larger critical value, then the hypothesis is rejected. In both cases, the critical value chosen depends on the desired risk (often 0.05) of rejecting the hypothesis when it is true.

Crossply -- Any filamentary laminate which is not uniaxial. Same as Angleply. In some references, the term crossply is used to designate only those laminates in which the laminae are at right angles to one another, while the term angleply is used for all others. In the handbook, the two terms are used synonymously. The reservation of a separate terminology for only one of several basic orientations is unwarranted because a laminate orientation code is used.

Cumulative Distribution Function -- See Volume 1, Section 8.1.4.

Cure -- To change the properties of a thermosetting resin irreversibly by chemical reaction, i.e., condensation, ring closure, or addition. Cure may be accomplished by addition of curing (cross-linking) agents, with or without catalyst, and with or without heat. Cure may occur also by addition, such as occurs with anhydride cures for epoxy resin systems.

Cure Cycle -- The schedule of time periods at specified conditions to which a reacting thermosetting material is subjected in order to reach a specified property level.

Cure Stress -- A residual internal stress produced during the curing cycle of composite structures. Normally, these stresses originate when different components of a lay-up have different thermal coefficients of expansion.

Debond -- A deliberate separation of a bonded joint or interface, usually for repair or rework purposes. (See **Disbond**, **Unbond**).

Deformation -- The change in shape of a specimen caused by the application of a load or force.

Degradation -- A deleterious change in chemical structure, physical properties or appearance.

Delamination -- The separation of the layers of material in a laminate. This may be local or may cover a large area of the laminate. It may occur at any time in the cure or subsequent life of the laminate and may arise from a wide variety of causes.

Denier -- A direct numbering system for expressing linear density, equal to the mass in grams per 9000 meters of yarn, filament, fiber, or other textile strand.

Density -- The mass per unit volume.

Desorption -- A process in which an absorbed or adsorbed material is released from another material. Desorption is the reverse of absorption, adsorption, or both.

Deviation -- Variation from a specified dimension or requirement, usually defining the upper and lower limits.

Dielectric Constant -- The ratio of the capacity of a condenser having a dielectric constant between the plates to that of the same condenser when the dielectric is replaced by a vacuum; a measure of the electrical charge stored per unit volume at unit potential.

Dielectric Strength -- The average potential per unit thickness at which failure of the dielectric material occurs.

Disbond -- An area within a bonded interface between two adherends in which an adhesion failure or separation has occurred. It may occur at any time during the life of the structure and may arise from a wide variety of causes. Also, colloquially, an area of separation between two laminae in the finished laminate (in this case the term "delamination" is normally preferred.) (See **Debond, Unbond, Delamination**.)

Distribution -- A formula which gives the probability that a value will fall within prescribed limits. (See **Normal**, **Weibull**, and **Lognormal Distributions**, also Volume 1, Section 8.1.4).

Dry -- a material condition of moisture equilibrium with a surrounding environment at 5% or lower relative humidity.

Dry Fiber Area -- Area of fiber not totally encapsulated by resin.

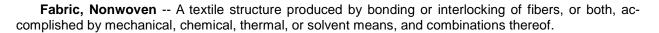
Ductility -- The ability of a material to deform plastically before fracturing.

Elasticity -- The property of a material which allows it to recover its original size and shape immediately after removal of the force causing deformation.

Elongation -- The increase in gage length or extension of a specimen during a tension test, usually expressed as a percentage of the original gage length.

Eluate -- The liquid emerging from a column (in liquid chromatography).

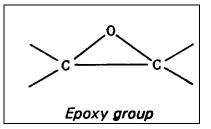
Eluent -- The mobile phase used to sweep or elute the sample (solute) components into, through, and out of the column.


End -- A single fiber, strand, roving or yarn being or already incorporated into a product. An end may be an individual warp yarn or cord in a woven fabric. In referring to aramid and glass fibers, an end is usually an untwisted bundle of continuous filaments.

Epoxy Equivalent Weight -- The number of grams of resin which contain one chemical equivalent of the epoxy group.

Epoxy Resin -- Resins which may be of widely different structures but are characterized by the presence of the epoxy group. (The epoxy or epoxide group is usually present as a gly-cidyl ether, glycidyl amine, or as part of an aliphatic ring system. The aromatic type epoxy resins are normally used in composites.)

Extensometer -- A device for measuring linear strain.


F-Distribution -- See Volume 1, Section 8.1.4.

Fabric, Woven -- A generic material construction consisting of interlaced yarns or fibers, usually a planar structure. Specifically, as used in this handbook, a cloth woven in an established weave pattern from advanced fiber yarns and used as the fibrous constituent in an advanced composite lamina. In a fabric lamina, the warp direction is considered the longitudinal direction, analogous to the filament direction in a filamentary lamina.

Fell -- The point of braid formation, which is defined as the point at which the yarns in a braid system cease movement relative to each other.

Fiber -- A general term used to refer to filamentary materials. Often, fiber is used synonymously with filament. It is a general term for a filament of finite length. A unit of matter, either natural or manmade, which forms the basic element of fabrics and other textile structures.

Fiber Content -- The amount of fiber present in a composite. This is usually expressed as a percentage volume fraction or weight fraction of the composite.

Fiber Count -- The number of fibers per unit width of ply present in a specified section of a composite.

Fiber Direction -- The orientation or alignment of the longitudinal axis of the fiber with respect to a stated reference axis.

Fiber System -- The type and arrangement of fibrous material which comprises the fiber constituent of an advanced composite. Examples of fiber systems are collimated filaments or filament yarns, woven fabric, randomly oriented short-fiber ribbons, random fiber mats, whiskers, etc.

Fiber Volume (Fraction) -- See fiber content.

Filament -- The smallest unit of a fibrous material. The basic units formed during spinning and which are gathered into strands of fiber, (for use in composites). Filaments usually are of extreme length and of very small diameter. Filaments normally are not used individually. Some textile filaments can function as a yarn when they are of sufficient strength and flexibility.

Filamentary Composite -- A composite material reinforced with continuous fibers.

Filament winding -- See Winding.

Filament Wound -- Pertaining to an object created by the filament winding method of fabrication.

Fill (Filling) -- In a woven fabric, the yarn running from selvage to selvage at right angles to the warp.

Filler -- A relatively inert substance added to a material to alter its physical, mechanical, thermal, electrical, and other properties or to lower cost. Sometimes the term is used specifically to mean particulate additives.

Finish (or Size System) -- A material, with which filaments are treated, which contains a coupling agent to improve the bond between the filament surface and the resin matrix in a composite material. In addition, finishes often contain ingredients which provide lubricity to the filament surface, preventing abrasive damage during handling, and a binder which promotes strand integrity and facilitates packing of the filaments.

Fixed Effect -- A systematic shift in a measured quantity due to a particular level change of a treatment or condition. (See Volume 1, Section 8.1.4.)

Flash -- Excess material which forms at the parting line of a mold or die, or which is extruded from a closed mold.

Former Plate -- A die attached to a braiding machine which helps to locate the fell.

Fracture Ductility -- The true plastic strain at fracture.

Gage Length -- the original length of that portion of the specimen over which strain or change of length is determined.

Gel -- The initial jelly-like solid phase that develops during formation of a resin from a liquid. Also, a semi-solid system consisting of a network of solid aggregates in which liquid is held.

Gel Coat -- A quick-setting resin used in molding processes to provide an improved surface for the composite; it is the first resin applied to the mold after the mold-release agent.

Gel Point -- The stage at which a liquid begins to exhibit pseudo-elastic properties. (This can be seen from the inflection point on a viscosity-time plot.)

Gel Time -- The period of time from a pre-determined starting point to the onset of gelation (gel point) as defined by a specific test method.

Glass -- An inorganic product of fusion which has cooled to a rigid condition without crystallizing. In the handbook, all reference to glass will be to the fibrous form as used in filaments, woven fabric, yarns, mats, chopped fibers, etc.

Glass Cloth -- Conventionally-woven glass fiber material (see Scrim).

Glass Fibers -- A fiber spun from an inorganic product of fusion which has cooled to a rigid condition without crystallizing.

Glass Transition -- The reversible change in an amorphous polymer or in amorphous regions of a partially crystalline polymer from (or to) a viscous or rubbery condition to (or from) a hard and relatively brittle one.

Glass Transition Temperature -- The approximate midpoint of the temperature range over which the glass transition takes place.

Graphite Fibers -- See Carbon Fibers.

Greige -- Fabric that has received no finish.

Hand Lay-up -- A process in which components are applied either to a mold or a working surface, and the successive plies are built up and worked by hand.

Hardness -- Resistance to deformation; usually measured by indention. Types of standard tests include Brinell, Rockwell, Knoop, and Vickers.

Heat Cleaned -- Glass or other fibers which have been exposed to elevated temperatures to remove preliminary sizings or binders which are not compatible with the resin system to be applied.

Heterogeneous -- Descriptive term for a material consisting of dissimilar constituents separately identifiable; a medium consisting of regions of unlike properties separated by internal boundaries. (Note that all nonhomogeneous materials are not necessarily heterogeneous).

Homogeneous -- Descriptive term for a material of uniform composition throughout; a medium which has no internal physical boundaries; a material whose properties are constant at every point, in other words, constant with respect to spatial coordinates (but not necessarily with respect to directional coordinates).

Horizontal Shear -- Sometimes used to indicate interlaminar shear. This is not an approved term for use in this handbook.

Humidity, Relative -- The ratio of the pressure of water vapor present to the pressure of saturated water vapor at the same temperature.

Hybrid -- A composite laminate comprised of laminae of two or more composite material systems. Or, a combination of two or more different fibers such as carbon and glass or carbon and aramid into a structure (tapes, fabrics and other forms may be combined).

Hygroscopic -- Capable of absorbing and retaining atmospheric moisture.

Hysteresis -- The energy absorbed in a complete cycle of loading and unloading.

Inclusion -- A physical and mechanical discontinuity occurring within a material or part, usually consisting of solid, encapsulated foreign material. Inclusions are often capable of transmitting some structural stresses and energy fields, but in a noticeably different manner from the parent material.

Integral Composite Structure -- Composite structure in which several structural elements, which would conventionally be assembled by bonding or with mechanical fasteners after separate fabrication, are instead laid up and cured as a single, complex, continuous structure; e.g., spars, ribs, and one stiffened cover of a wing box fabricated as a single integral part. The term is sometimes applied more loosely to any composite structure not assembled by mechanical fasteners.

Interface -- The boundary between the individual, physically distinguishable constituents of a composite.

Interlaminar -- Between the laminae of a laminate.

Discussion: describing objects (e.g., voids), events (e.g., fracture), or fields (e.g., stress).

Interlaminar Shear -- Shearing force tending to produce a relative displacement between two laminae in a laminate along the plane of their interface.

Intermediate Bearing Stress -- The bearing stress at the point on the bearing load-deformation curve where the tangent is equal to the bearing stress divided by a designated percentage (usually 4%) of the original hole diameter.

Intralaminar -- Within the laminae of a laminate.

Discussion: describing objects (for example, voids), event (for example, fracture), or fields (for example, stress).

Isotropic -- Having uniform properties in all directions. The measured properties of an isotropic material are independent of the axis of testing.

Jammed State -- The state of a braided fabric under tension or compression where the deformation of the fabric is dominated by the deformation properties of the yarn.

Knitting -- A method of constructing fabric by interlocking series of loops of one or more yarns.

Knuckle Area -- The area of transition between sections of different geometry in a filament wound part.

k-Sample Data -- A collection of data consisting of values observed when sampling from k batches.

Laid-In Yarns -- A system of longitudinal yarns in a triaxial braid which are inserted between the bias yarns.

Lamina -- A single ply or layer in a laminate.

Discussion: For filament winding, a lamina is a layer.

Laminae -- Plural of lamina.

Laminate -- for fiber-reinforced composites, a consolidated collection of laminae (plies) with one or more orientations with respect to some reference direction.

Laminate Orientation -- The configuration of a crossplied composite laminate with regard to the angles of crossplying, the number of laminae at each angle, and the exact sequence of the lamina lay-up.

Lattice Pattern -- A pattern of filament winding with a fixed arrangement of open voids.

Lay-up -- A process of fabrication involving the assembly of successive layers of resin-impregnated material.

Lognormal Distribution -- A probability distribution for which the probability that an observation selected at random from this population falls between a and b (0 < a < b < B) is given by the area under the normal distribution between $\log a$ and $\log b$. The common (base 10) or the natural (base e) logarithm may be used. (See Volume 1, Section 8.1.4.)

Lower Confidence Bound -- See Confidence Interval.

Macro -- In relation to composites, denotes the gross properties of a composite as a structural element but does not consider the individual properties or identity of the constituents.

Macrostrain -- The mean strain over any finite gage length of measurement which is large in comparison to the material's interatomic distance.

Mandrel -- A form fixture or male mold used for the base in the production of a part by lay-up, filament winding or braiding.

Mat -- A fibrous material consisting of randomly oriented chopped or swirled filaments loosely held together with a binder.

Material Acceptance -- The testing of incoming material to ensure that it meets requirements.

Material Qualification -- The procedures used to accept a material by a company or organization for production use.

Material System -- A specific composite material made from specifically identified constituents in specific geometric proportions and arrangements and possessed of numerically defined properties.

Material System Class -- As used in this handbook, a group consisting of material systems categorized by the same generic constituent materials, but without defining the constituents uniquely; e.g., the carbon/epoxy class.

Material Variability -- A source of variability due to the spatial and consistency variations of the material itself and due to variation in its processing. (See Volume 1, Section 8.1.4.)

Matrix -- The essentially homogeneous material in which the fiber system of a composite is embedded.

Matrix Content -- The amount of matrix present in a composite expressed either as percent by weight or percent by volume. Discussion: For polymer matrix composites this is called resin content, which is usually expressed as percent by weight

Mean -- See Sample Mean and Population Mean.

Mechanical Properties -- The properties of a material that are associated with elastic and inelastic reaction when force is applied, or the properties involving the relationship between stress and strain.

Median -- See Sample Median and Population Median.

Micro -- In relation to composites, denotes the properties of the constituents, i.e., matrix and reinforcement and interface only, as well as their effects on the composite properties.

Microstrain -- The strain over a gage length comparable to the material's interatomic distance.

Modulus, Chord -- The slope of the chord drawn between any two specified points on the stress-strain curve.

Modulus, initial -- The slope of the initial straight portion of a stress-strain curve.

Modulus, Secant -- The slope of the secant drawn from the origin to any specified point on the stress-strain curve.

Modulus, Tangent -- The ratio of change in stress to change in strain derived from the tangent to any point on a stress-strain curve.

Modulus, Young's -- The ratio of change in stress to change in strain below the elastic limit of a material. (Applicable to tension and compression).

Modulus of Rigidity (also Shear Modulus or Torsional Modulus) -- The ratio of stress to strain below the proportional limit for shear or torsional stress.

Modulus of Rupture, in Bending -- The maximum tensile or compressive stress (whichever causes failure) value in the extreme fiber of a beam loaded to failure in bending. The value is computed from the flexure equation:

$$F^{b} = \frac{Mc}{I}$$
 1.8(a)

where M = maximum bending moment computed from the maximum load and the original moment arm,

c = initial distance from the neutral axis to the extreme fiber where failure occurs,

 ${\rm I}$ = the initial moment of inertia of the cross section about its neutral axis.

Modulus of Rupture, in Torsion -- The maximum shear stress in the extreme fiber of a member of circular cross section loaded to failure in torsion calculated from the equation:

$$F^{s} = \frac{Tr}{J}$$
 1.8(b)

where T = maximum twisting moment,

r = original outer radius,

J = polar moment of inertia of the original cross section.

Moisture Content -- The amount of moisture in a material determined under prescribed condition and expressed as a percentage of the mass of the moist specimen, i.e., the mass of the dry substance plus the moisture present.

Moisture Equilibrium -- The condition reached by a sample when it no longer takes up moisture from, or gives up moisture to, the surrounding environment.

Mold Release Agent -- A lubricant applied to mold surfaces to facilitate release of the molded article.

Molded Edge -- An edge which is not physically altered after molding for use in final form and particularly one which does not have fiber ends along its length.

Molding -- The forming of a polymer or composite into a solid mass of prescribed shape and size by the application of pressure and heat.

Monolayer -- The basic laminate unit from which crossplied or other laminates are constructed.

Monomer -- A compound consisting of molecules each of which can provide one or more constitutional units.

NDE -- Nondestructive evaluation. Broadly considered synonymous with NDI.

NDI -- Nondestructive inspection. A process or procedure for determining the quality or characteristics of a material, part, or assembly without permanently altering the subject or its properties.

NDT -- Nondestructive testing. Broadly considered synonymous with NDI.

Necking -- A localized reduction in cross-sectional area which may occur in a material under tensile stress.

Negatively Skewed -- A distribution is said to be negatively skewed if the distribution is not symmetric and the longest tail is on the left.

Nominal Specimen Thickness -- The nominal ply thickness multiplied by the number of plies.

Nominal Value -- A value assigned for the purpose of a convenient designation. A nominal value exists in name only.

Normal Distribution -- A two parameter (μ, σ) family of probability distributions for which the probability that an observation will fall between a and b is given by the area under the curve

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{\left(x-\mu\right)^2}{2\sigma^2}\right]$$
 1.8(c)

between a and b. (See Volume 1, Section 8.1.4.)

Normalization -- A mathematical procedure for adjusting raw test values for fiber-dominated properties to a single (specified) fiber volume content.

Normalized Stress -- Stress value adjusted to a specified fiber volume content by multiplying the measured stress value by the ratio of specimen fiber volume to the specified fiber volume. This ratio may be obtained directly by experimentally measuring fiber volume, or indirectly by calculation using specimen thickness and fiber areal weight.

Observed Significance Level (OSL) -- The probability of observing a more extreme value of the test statistic when the null hypotheses is true.

Offset Shear Strength --- (from valid execution of a material property shear response test) the value of shear stress at the intersection between a line parallel to the shear chord modulus of elasticity and the shear stress/strain curve, where the line has been offset along the shear strain axis from the origin by a specified strain offset value.

Oligomer -- A polymer consisting of only a few monomer units such as a dimer, trimer, etc., or their mixtures.

One-Sided Tolerance Limit Factor -- See **Tolerance Limit Factor**.

Orthotropic -- Having three mutually perpendicular planes of elastic symmetry.

Oven Dry -- The condition of a material that has been heated under prescribed conditions of temperature and humidity until there is no further significant change in its mass.

PAN Fibers -- Reinforcement fiber derived from the controlled pyrolysis of poly(acrylonitrile) fiber.

Parallel Laminate -- A laminate of woven fabric in which the plies are aligned in the same position as originally aligned in the fabric roll.

Parallel Wound -- A term used to describe yarn or other material wound into a flanged spool.

Peel Ply -- A layer of resin free material used to protect a laminate for later secondary bonding.

pH -- A measure of acidity or alkalinity of a solution, with neutrality represented by a value of 7, with increasing acidity corresponding to progressively smaller values, and increasing alkalinity corresponding to progressively higher values.

Pick Count -- The number of filling yarns per inch or per centimeter of woven fabric.

Pitch Fibers -- Reinforcement fiber derived from petroleum or coal tar pitch.

Plastic -- A material that contains one or more organic polymers of large molecular weight, is solid in its finished state, and, at some state in its manufacture or processing into finished articles, can be shaped by flow.

Plasticizer -- A material of lower molecular weight added to a polymer to separate the molecular chains. This results in a depression of the glass transition temperature, reduced stiffness and brittleness, and improved processability. (Note, many polymeric materials do not need a plasticizer.)

Plied Yarn -- A yarn formed by twisting together two or more single yarns in one operation.

Poisson's Ratio -- The absolute value of the ratio of transverse strain to the corresponding axial strain resulting from uniformly distributed axial stress below the proportional limit of the material.

Polymer -- An organic material composed of molecules characterized by the repetition of one or more types of monomeric units.

Polymerization -- A chemical reaction in which the molecules of monomers are linked together to form polymers via two principal reaction mechanisms. Addition polymerizations proceed by chain growth and most condensation polymerizations through step growth.

Population -- The set of measurements about which inferences are to be made or the totality of possible measurements which might be obtained in a given testing situation. For example, "all possible ultimate tensile strength measurements for carbon/epoxy system A, conditioned at 95% relative humidity and room temperature". In order to make inferences about a population, it is often necessary to make assumptions about its distributional form. The assumed distributional form may also be referred to as the population. (See Volume 1, Section 8.1.4.)

Population Mean -- The average of all potential measurements in a given population weighted by their relative frequencies in the population. (See Volume 1, Section 8.1.4.)

Population Median -- That value in the population such that the probability of exceeding it is 0.5 and the probability of being less than it is 0.5. (See Volume 1, Section 8.1.4.)

Population Variance -- A measure of dispersion in the population.

Porosity -- A condition of trapped pockets of air, gas, or vacuum within a solid material, usually expressed as a percentage of the total nonsolid volume to the total volume (solid plus nonsolid) of a unit quantity of material.

Positively Skewed -- A distribution is said to be positively skewed if the distribution is not symmetric and the longest tail is on the right.

Postcure -- Additional elevated temperature cure, usually without pressure, to increase the glass transition temperature, to improve final properties, or to complete the cure.

Pot Life -- The period of time during which a reacting thermosetting composition remains suitable for its intended processing after mixing with a reaction initiating agent.

Precision -- The degree of agreement within a set of observations or test results obtained. Precision involves repeatability and reproducibility.

Precursor (for Carbon or Graphite Fiber) -- Either the PAN or pitch fibers from which carbon and graphite fibers are derived.

Preform -- An assembly of dry fabric and fibers which has been prepared for one of several different wet resin injection processes. A preform may be stitched or stabilized in some other way to hold its A shape. A commingled preform may contain thermoplastic fibers and may be consolidated by elevated temperature and pressure without resin injection.

Preply -- Layers of prepreg material, which have been assembled according to a user specified stacking sequence.

Prepreg -- Ready to mold or cure material in sheet form which may be tow, tape, cloth, or mat impregnated with resin. It may be stored before use.

Pressure -- The force or load per unit area.

Probability Density Function -- See Volume 1, Section 8.1.4.

Proportional Limit -- The maximum stress that a material is capable of sustaining without any deviation from the proportionality of stress to strain (also known as Hooke's law).

Quasi-Isotropic Laminate -- A balanced and symmetric laminate for which a constitutive property of interest, at a given point, displays isotropic behavior in the plane of the laminate.

Discussion: Common quasi-isotropic laminates are $(0/\pm 60)$ s and $(0/\pm 45/90)$ s.

Random Effect -- A shift in a measured quantity due to a particular level change of an external, usually uncontrollable, factor. (See Volume 1, Section 8.1.4.)

Random Error -- That part of the data variation that is due to unknown or uncontrolled factors and that affects each observation independently and unpredictably. (See Volume 1, Section 8.1.4.)

Reduction of Area -- The difference between the original cross sectional area of a tension test specimen and the area of its smallest cross section, usually expressed as a percentage of the original area.

Refractive Index - The ratio of the velocity of light (of specified wavelength) in air to its velocity in the substance under examination. Also defined as the sine of the angle of incidence divided by the sine of the angle of refraction as light passes from air into the substance.

Reinforced Plastic -- A plastic with relatively high stiffness or very high strength fibers embedded in the composition. This improves some mechanical properties over that of the base resin.

Release Agent -- See Mold Release Agent.

Resilience -- A property of a material which is able to do work against restraining forces during return from a deformed condition.

Resin -- An organic polymer or prepolymer used as a matrix to contain the fibrous reinforcement in a composite material or as an adhesive. This organic matrix may be a thermoset or a thermoplastic, and may contain a wide variety of components or additives to influence; handleability, processing behavior and ultimate properties.

Resin Content -- See Matrix content.

Resin Starved Area -- Area of composite part where the resin has a non-continuous smooth coverage of the fiber.

Resin System -- A mixture of resin, with ingredients such as catalyst, initiator, diluents, etc. required for the intended processing and final product.

Room Temperature Ambient (RTA) -- 1) an environmental condition of 73±5°F (23±3°C) at ambient laboratory relative humidity; 2) a material condition where, immediately following consolidation/cure, the material is stored at 73±5°F (23±3°C) and at a maximum relative humidity of 60%.

Roving -- A number of strands, tows, or ends collected into a parallel bundle with little or no twist. In spun yarn production, an intermediate state between sliver and yarn.

S-Basis (or S-Value) -- The mechanical property value which is usually the specified minimum value of the appropriate government specification or SAE Aerospace Material Specification for this material.

Sample -- A small portion of a material or product intended to be representative of the whole. Statistically, a sample is the collection of measurements taken from a specified population. (See Volume 1, Section 8.1.4.)

Sample Mean -- The arithmetic average of the measurements in a sample. The sample mean is an estimator of the population mean. (See Volume 1, Section 8.1.4.)

Sample Median -- Order the observation from smallest to largest. Then the sample median is the value of the middle observation if the sample size is odd; the average of the two central observations if n is even. If the population is symmetric about its mean, the sample median is also an estimator of the population mean. (See Volume 1, Section 8.1.4.)

Sample Standard Deviation -- The square root of the sample variance. (See Volume 1, Section 8.1.4.)

Sample Variance -- The sum of the squared deviations from the sample mean, divided by n-1. (See Volume 1, Section 8.1.4.)

Sandwich Construction -- A structural panel concept consisting in its simplest form of two relatively thin, parallel sheets of structural material bonded to, and separated by, a relatively thick, light-weight core.

Saturation -- An equilibrium condition in which the net rate of absorption under prescribed conditions falls essentially to zero.

MIL-HDBK-17-2F

Volume 2, Chapter 1 General Information

Scrim (also called **Glass Cloth, Carrier**) -- A low cost fabric woven into an open mesh construction, used in the processing of tape or other B-stage material to facilitate handling.

Secondary Bonding -- The joining together, by the process of adhesive bonding, of two or more already-cured composite parts, during which the only chemical or thermal reaction occurring is the curing of the adhesive itself.

Selvage or Selvedge -- The woven edge portion of a fabric parallel to the warp.

Set -- The strain remaining after complete release of the force producing the deformation.

Shear Fracture (for crystalline type materials) -- A mode of fracture resulting from translation along slip planes which are preferentially oriented in the direction of the shearing stress.

Shelf Life -- The length of time a material, substance, product, or reagent can be stored under specified environmental conditions and continue to meet all applicable specification requirements and/or remain suitable for its intended function.

Short Beam Strength (SBS) -- a test result from valid execution of ASTM test method D2344.

Significant -- Statistically, the value of a test statistic is significant if the probability of a value at least as extreme is less than or equal to a predetermined number called the significance level of the test.

Significant Digit -- Any digit that is necessary to define a value or quantity.

Size System -- See Finish.

Sizing -- A generic term for compounds which are applied to yarns to bind the fiber together and stiffen the yarn to provide abrasion-resistance during weaving. Starch, gelatin, oil, wax, and man-made polymers such as polyvinyl alcohol, polystyrene, polyacrylic acid, and polyacetatates are employed.

Skewness -- See Positively Skewed, Negatively Skewed.

Sleeving -- A common name for tubular braided fabric.

Slenderness Ratio -- The unsupported effective length of a uniform column divided by the least radius of gyration of the cross-sectional area.

Sliver -- A continuous strand of loosely assembled fiber that is approximately uniform in cross-sectional area and has no twist.

Solute -- The dissolved material.

Specific Gravity -- The ratio of the weight of any volume of a substance to the weight of an equal volume of another substance taken as standard at a constant or stated temperature. Solids and liquids are usually compared with water at 39°F (4°C).

Specific Heat -- The quantity of heat required to raise the temperature of a unit mass of a substance one degree under specified conditions.

Specimen -- A piece or portion of a sample or other material taken to be tested. Specimens normally are prepared to conform with the applicable test method.

Spindle -- A slender upright rotation rod on a spinning frame, roving frame, twister or similar machine.

Standard Deviation -- See Sample Standard Deviation.

Staple -- Either naturally occurring fibers or lengths cut from filaments.

Step-Growth Polymerization -- One of the two principal polymerization mechanisms. In sep-growth polymerization, the reaction grows by combination of monomer, oligomer, or polymer molecules through the consumption of reactive groups. Since average molecular weight increases with monomer consumption, high molecular weight polymers are formed only at high degrees of conversion.

Strain -- the per unit change, due to force, in the size or shape of a body referred to its original size or shape. Strain is a nondimensional quantity, but it is frequently expressed in inches per inch, meters per meter, or percent.

Strand -- Normally an untwisted bundle or assembly of continuous filaments used as a unit, including slivers, tow, ends, yarn, etc. Sometimes a single fiber or filament is called a strand.

Strength -- the maximum stress which a material is capable of sustaining.

Stress -- The intensity at a point in a body of the forces or components of forces that act on a given plane through the point. Stress is expressed in force per unit area (pounds-force per square inch, mega-pascals, etc.).

Stress Relaxation -- The time dependent decrease in stress in a solid under given constraint conditions.

Stress-Strain Curve (Diagram) -- A graphical representation showing the relationship between the change in dimension of the specimen in the direction of the externally applied stress and the magnitude of the applied stress. Values of stress usually are plotted as ordinates (vertically) and strain values as abscissa (horizontally).

Structural Element -- a generic element of a more complex structural member (for example, skin, stringer, shear panels, sandwich panels, joints, or splices).

Structured Data -- See Volume 1, Section 8.1.4.

Surfacing Mat -- A thin mat of fine fibers used primarily to produce a smooth surface on an organic matrix composite.

Symmetrical Laminate -- A composite laminate in which the sequence of plies below the laminate midplane is a mirror image of the stacking sequence above the midplane.

Tack -- Stickiness of the prepreg.

Tape -- Prepreg fabricated in widths up to 12 inches wide for carbon and 3 inches for boron. Cross stitched carbon tapes up to 60 inches wide are available commercially in some cases.

Tenacity -- The tensile stress expressed as force per unit linear density of the unstrained specimen i.e., grams-force per denier or grams-force per tex.

Tex -- A unit for expressing linear density equal to the mass or weight in grams of 1000 meters of filament, fiber, yarn or other textile strand.

Thermal Conductivity -- Ability of a material to conduct heat. The physical constant for quantity of heat that passes through unit cube of a substance in unit time when the difference in temperature of two faces is one degree.

Thermoplastic -- A plastic that repeatedly can be softened by heating and hardened by cooling through a temperature range characteristic of the plastic, and when in the softened stage, can be shaped by flow into articles by molding or extrusion.

Thermoset -- A class of polymers that, when cured using heat, chemical, or other means, changes into a substantially infusible and insoluble material.

Tolerance -- The total amount by which a quantity is allowed to vary.

Tolerance Limit -- A lower (upper) confidence limit on a specified percentile of a distribution. For example, the B-basis value is a 95% lower confidence limit on the tenth percentile of a distribution.

Tolerance Limit Factor -- The factor which is multiplied by the estimate of variability in computing the tolerance limit.

Toughness -- A measure of a material's ability to absorb work, or the actual work per unit volume or unit mass of material that is required to rupture it. Toughness is proportional to the area under the loadelongation curve from the origin to the breaking point.

Tow -- An untwisted bundle of continuous filaments. Commonly used in referring to man-made fibers, particularly carbon and graphite fibers, in the composites industry.

Transformation -- A transformation of data values is a change in the units of measurement accomplished by applying a mathematical function to all data values. For example, if the data is given by x, then y = x + 1, x, 1/x, log x, and cos x are transformations.

Transition, First Order -- A change of state associated with crystallization or melting in a polymer.

Transversely Isotropic -- Descriptive term for a material exhibiting a special case of orthotropy in which properties are identical in two orthotropic dimensions, but not the third; having identical properties in both transverse directions but not the longitudinal direction.

Traveller -- A small piece of the same product (panel, tube, etc.) as the test specimen, used for example to measure moisture content as a result of conditioning.

Twist -- The number of turns about its axis per unit of length in a yarn or other textile strand. It may be expressed as turns per inch (tpi) or turns per centimeter (tpcm).

Twist, Direction of -- The direction of twist in yarns and other textile strands is indicated by the capital letters S and Z. Yarn has S twist if, when held in a vertical position, the visible spirals or helices around its central axis are in the direction of slope of the central portion of the letter S, and Z twist is in the other direction.

Twist Multiplier -- The ratio of turns per inch to the square root of the cotton count.

Typical Basis -- A typical property value is a sample mean. Note that the typical value is defined as the simple arithmetic mean which has a statistical connotation of 50% reliability with a 50% confidence.

Unbond -- An area within a bonded interface between two adherends in which the intended bonding action failed to take place. Also used to denote specific areas deliberately prevented from bonding in order to simulate a defective bond, such as in the generation of quality standards specimens. (See **Disbond**, **Debond**).

Unidirectional Fiber-Reinforced Composite -- Any fiber-reinforced composite with all fibers aligned in a single direction.

Unit Cell -- The term applied to the path of a yarn in a braided fabric representing a unit cell of a repeating geometric pattern. The smallest element representative of the braided structure.

Unstructured Data -- See Volume 1, Section 8.1.4.

Upper Confidence Limit -- See Confidence Interval.

Vacuum Bag Molding -- A process in which the lay-up is cured under pressure generated by drawing a vacuum in the space between the lay-up and a flexible sheet placed over it and sealed at the edges.

Variance -- See Sample Variance.

Viscosity -- The property of resistance to flow exhibited within the body of a material.

Void - Any pocket of enclosed gas or near-vacuum within a composite.

Warp -- The longitudinally oriented yarn in a woven fabric (see **Fill**); a group of yarns in long lengths and approximately parallel.

Weibull Distribution (Two-Parameter) -- A probability distribution for which the probability that a randomly selected observation from this population lies between a and b (0 < a < b < 4) is given by Equation 1.8(d) where α is called the scale parameter and β is called the shape parameter. (See Volume 1, Section 8.1.4.)

$$\exp\left[-\left(\frac{a}{\alpha}\right)^{\beta}\right] - \exp\left[-\left(\frac{b}{\alpha}\right)^{\beta}\right]$$
 1.8(d)

Wet Lay-up -- A method of making a reinforced product by applying a liquid resin system while or after the reinforcement is put in place.

Wet Strength -- The strength of an organic matrix composite when the matrix resin is saturated with absorbed moisture. (See Saturation).

Wet Winding -- A method of filament winding in which the fiber reinforcement is coated with the resin system as a liquid just prior to wrapping on a mandrel.

Whisker -- A short single crystal fiber or filament. Whisker diameters range from 1 to 25 microns, with aspect ratios between 100 and 15,000.

Winding -- A process in which continuous material is applied under controlled tension to a form in a predetermined geometric relationship to make a structure.

Discussion: A matrix material to bind the fibers together may be added before, during or after winding. Filament winding is the most common type.

Work Life -- The period during which a compound, after mixing with a catalyst, solvent, or other compounding ingredient, remains suitable for its intended use.

Woven Fabric Composite -- A major form of advanced composites in which the fiber constituent consists of woven fabric. A woven fabric composite normally is a laminate comprised of a number of laminae, each of which consists of one layer of fabric embedded in the selected matrix material. Individual fabric laminae are directionally oriented and combined into specific multiaxial laminates for application to specific envelopes of strength and stiffness requirements.

Yarn -- A generic term for strands or bundles of continuous filaments or fibers, usually twisted and suitable for making textile fabric.

Yarn, Plied -- Yarns made by collecting two or more single yarns together. Normally, the yarns are twisted together though sometimes they are collected without twist.

Yield Strength -- The stress at which a material exhibits a specified limiting deviation from the proportionality of stress to strain. (The deviation is expressed in terms of strain such as 0.2 percent for the Offset Method or 0.5 percent for the Total Extension Under Load Method.)

X-Axis -- In composite laminates, an axis in the plane of the laminate which is used as the 0 degree reference for designating the angle of a lamina.

X-Y Plane -- In composite laminates, the reference plane parallel to the plane of the laminate.

Y-Axis -- In composite laminates, the axis in the plane of the laminate which is perpendicular to the x-axis.

Z-Axis -- In composite laminates, the reference axis normal to the plane of the laminate.

REFERENCES

- 1.6.1(a) DOD/NASA Advanced Composites Design Guide, Vol. 4, Section 4.0.5, Air Force Wright Aeronautical Laboratories, Dayton, OH, prepared by Rockwell International Corporation, 1983 (distribution limited).
- 1.6.1(b) ASTM Guide E1309, "Identification of Composite Materials in Computerized Material Property Databases," *Annual Book of ASTM Standards*, Vol. 15.03, American Society for Testing and Materials, West Conshohocken, PA.
- 1.7(a) Military Standardization Handbook, *Metallic Materials and Elements for Aerospace Vehicle Structures*, MIL-HDBK-5D, Change Notice 2, May, 1985.
- 1.7(b) DOD/NASA Advanced Composites Design Guide, Air Force Wright Aeronautical Laboratories, Dayton, OH, prepared by Rockwell International Corporation, 1983 (distribution limited).
- 1.7(c) ASTM Terminology E206, "Definitions of Terms Relating to Fatigue Testing and the Statistical Analysis of Fatigue Data," *Annual Book of ASTM Standards*, Vol. 03.01, American Society for Testing and Materials, West Conshohocken, PA. (canceled March 27, 1987; replaced by ASTM E 1150).
- 1.7.2(a) ASTM Practice E380, "Metric Practice," Annual Book of ASTM Standards, Vol. 14.01, American Society for Testing and Materials, West Conshohocken, PA. (canceled April 28, 1997; now sold in book form called "Metric 97").
- 1.7.2(b) Engineering Design Handbook: Metric Conversion Guide, DARCOM P 706-470, July 1976.
- 1.7.2(c) *The International System of Units (SI)*, NBS Special Publication 330, National Bureau of Standards, 1986 edition.
- 1.7.2(d) Units and Systems of Weights and Measures, Their Origin, Development, and Present Status, NBS Letter Circular LC 1035, National Bureau of Standards, November 1985.
- 1.7.2(e) The International System of Units Physical Constants and Conversion Factors, NASA Special Publication 7012, 1964.

This page intentionally left blank

CHAPTER 2 FIBER PROPERTIES

- 2.1 INTRODUCTION
- 2.2 CARBON FIBERS
- 2.3 ARAMID FIBERS
- 2.4 GLASS FIBERS
- 2.5 BORON FIBERS
- 2.6 ALUMINA FIBERS
- 2.7 SILICON CARBIDE FIBERS
- 2.8 QUARTZ FIBERS

This page intentionally left blank

CHAPTER 3 MATRIX PROPERTIES

3.1 INTRODUCTION

3.2 EPOXIES

- 3.2.1 General Characteristics
- 3.2.2 Index of Supplies, Designations, and Abbreviations

3.3 POLYESTERS

- 3.4 PHENOLICS
- 3.5 SILICONES
- 3.6 **BISMALEIMIDES**
- 3.7 POLYBENZIMIDAZOLES
- 3.8 POLYIMIDES, THERMOSET
- **3.9 POLYETHERETHERKETONES**
- 3.10 POLYPHENYLENE SULFIDES
- 3.11 POLYETHERIMIDES
- 3.12 POLYSULFONES
- 3.13 POLYAMIDE-IMIDES
- 3.14 POLYIMIDES, THERMOPLASTICS

This page intentionally left blank

CHAPTER 4 CARBON FIBER COMPOSITES

4.1 INTRODUCTION

4.2 CARBON - EPOXY COMPOSITES

4.2.1 T-500 12k/976 unidirectional tape

Material Description:

Material: T-500 12k/976

Form: Unidirectional tape, fiber areal weight of 142 g/m², typical cured resin content of 28-34%, typical cured ply thickness of 0.0053 inches.

Processing: Autoclave cure; 240°F, 85 psi, 1 hour; 350°F, 100 psi for 2 hours.

General Supplier Information:

- Fiber: T-500 fibers are continuous carbon filaments made from PAN precursor, surface treated to improve handling characteristics and structural properties. Filament count is 12,000 filaments/tow. Typical tensile modulus is 35.5 x 10⁶ psi. Typical tensile strength is 575,000 psi.
- Matrix: 976 is a high flow, modified epoxy resin that meets the NASA outgassing requirements. 10 days out-time at 72°F.

Maximum Short Term Service Temperature: 350°F (dry), 250°F (wet)

Typical applications: General purpose commercial and military structural applications, good hot/wet properties.

4.2.1 T500 12k/976 unidirectional tape*

MATERIAL:	T-500 12k/976 unidirectional tape		C/Ep 145-UT T-500/976 Summary				
FORM:	Fiberite Hy-E 3076P unidirectional tape	Fiberite Hy-E 3076P unidirectional tape prepreg					
FIBER:	Union Carbide Thornel T-500 12k	MATRIX: Fiberite 976					
T _g (dry):	361°F T _g (wet):	Tg METHOD:					
PROCESSING:	240°F, 1 hour, 85 psi; 350°F, 2 hours, 100 psi						

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

Date of fiber manufacture	Date of testing	
Date of resin manufacture	Date of data submittal 6/	/88
Date of form manufacture 12/83	Date of analysis 1/	/93
Date of composite manufacture		

	75°F/A	-65°F/A	250°F/A		
Tension, 1-axis	II-I	II-I	II-I		
Tension, 2-axis	II-I	II-I	II-I		
Tension, 3-axis					
Compression, 1-axis					
Compression, 2-axis					
Compression, 3-axis					
Shear, 12-plane					
Shear, 23-plane					
Shear, 31-plane					

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.79		
Resin Density	(g/cm ³)	1.28		
Composite Density	(g/cm ³)	1.59	1.57 - 1.61	
Fiber Areal Weight	(g/m ²)	142	142 - 146	
Fiber Volume	(%)			
Ply Thickness	(in)	0.0053	0.0050 - 0.0057	

LAMINATE PROPERTY SUMMARY

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERIA		T-500 12k/976 unidirectional tape						
RESIN C FIBER VO PLY THIC	OLUME: 59-6	4 wt% 4 % 50 - 0.0057 in.	Comp: De Void Con	T-50 Tensio [142-UT 0/976 n, 1-axis 0] ₈ 5/A, 200/A			
TEST ME	THOD:		MODULUS	S CALCULATIO	N:		erim	
AST	M D 3039-76		Chord	, 20-40% of ultir	mate load			
NORMAL	IZED BY: Spec	cimen thickness	and batch fibe	er volume to 60%	% fiber volume	(0.0052 in. CP	Г)	
	ture (°F) Content (%) m at T, RH	75 ambi		-6 amb		25 amb		
Source C	ode	13		1:			3	
		Normalized	Measured	Normalized	Measured	Normalized	Measured	
	Mean Minimum Maximum C.V.(%)	295 257 329 6.41	298 270 328 5.74	213 163 243 9.78	213 196 235 5.02	273 236 302 7.39	276 258 310 6.05	
F_1^{tu}	B-value Distribution	(1) ANOVA		(1) Weibull		(1) Weibull		
(ksi)	C ₁ C ₂	20.5 4.64		221 13.1		282 15.7		
No. Specimens No. Batches Data Class		15 3 Interim		15 3 Interim		15 3 Interim		
$\mathbf{E}_1^{\mathbf{t}}$	Mean Minimum Maximum C.V.(%)	21.9 20.9 24.7 4.42	22.0 20.5 24.0 4.15	19.0 15.9 21.5 8.11	19.1 17.7 21.5 5.76	22.2 18.6 25.1 6.91	22.4 21.0 23.8 4.17	
(Msi)	No. Specimens No. Batches Data Class	15 3 Inter		11 3 Inte	3		5 3 erim	
v_{12}^{t}	Mean No. Specimens No. Batches							
	Data Class Mean		13000		10700		11800	
	Minimum Maximum C.V.(%)		11700 13900 4.98		9300 12000 5.98		10800 12900 5.32	
$arepsilon_1^{ ext{tu}}$	B-value Distribution		(1) ANOVA		(1) Weibull		(1) Weibull	
(με)	C ₁ C ₂		706 4.75		11000 18.8		12100 21.6	
	No. Specimens No. Batches Data Class	15 3 Inter		1: 3 Inte	3		5 3 erim	

(1) Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATEF		0 12k/976 unid				Table 4.2.1(b)
FIBER	VOLUME: 59-6	4 wt% 4 % 50-0.0057 in.	COMP: D VOID COI		C/Ep 142-UT T-500/976 Tension, 2-axis [90] ₈ 75/A, -65/A, 200/A	
TEST	METHOD:		MODULU	S CALCULATI	ON:	Interim
	STM D 3039-76			, 20 - 40 % of u		
		normalized				
Moistur Equilibi	rature (°F) re Content (%) rium at T, RH	75 ambient	-65 ambient	250 ambient		
Source		13	13	13		
	Mean	10.2	10.3	7.90 7.00		
	Minimum Maximum	9.40 11.3	9.40 12.1	7.00 8.80		
	C.V.(%)	5.59	6.61	5.35		
F_2^{tu}	B-value Distribution	(1) ANOVA	(1) Lognormal	(1) Weibull		
(ksi)	C ₁ C ₂	0.594 3.48	2.33 0.0636	8.09 19.7		
	No. Specimens No. Batches	15 3	15 3	15 3		
	Data Class Mean	Interim 1.3	Interim 1.5	Interim 1.2		
	Minimum	1.3	1.4	1.1		
	Maximum	1.7	1.6	1.3		
E_{2}^{t}	C.V.(%)	7.8	4.8	7.0		
(Msi)	No. Specimens No. Batches	15 3	15 3	15 3		
	Data Class	Interim	Interim	Interim		
v_{21}^{t}	Mean No. Specimens No. Batches					
	Data Class				ļ	
	Mean Minimum Maximum C.V.(%)	7750 5800 8900 10.3	7110 6200 8600 8.28	6930 5900 8000 8.32		
$\varepsilon_2^{ m tu}$	B-value Distribution	(1) Weibull	(1) Weibull	(1) Weibull		
(με)	C ₁ C ₂	8080 12.4	7390 11.5	7180 13.7		
	No. Specimens No. Batches	15 3	15 3	15 3		
	Data Class	Interim	Interim	Interim		

(1) Basis values are presented only for A and B data classes.

4.2.2 HITEX 33 6k/E7K8 unidirectional tape

Material Description:

Material: HITEX 33-6k/E7K8

- Form: Unidirectional tape, fiber areal weight of 145 g/m², typical cured resin content of 34% typical cured ply thickness of 0.0057 inches.
- Processing: Autoclave cure; 300-310°F, 55 psi for 2 hours. Low exotherm profile for processing of thick parts.

General Supplier Information:

- Fiber: HITEX 33 fibers are continuous carbon filaments made from PAN precursor. Filament count is 6,000 filaments/tow. Typical tensile modulus is 33 x 10⁶ psi. Typical tensile strength is 560,000 psi. Good drape.
- Matrix: E7K8 is a medium flow, low exotherm epoxy resin. Good tack; up to 20 days out-time at ambient temperature

Maximum Short Term Service Temperature: 300°F (dry), 190°F (wet)

Typical applications: Primary and secondary structural applications on commercial and military aircraft, jet engine applications such as stationary airfoils and thrust reverser blocker doors.

4.2.2 HITEX 33 6k/E7K8 unidirectional tape*

MATERIAL:	HITEX 33 6k/E7K8 unidirectional tap	e		C/Ep 145-UT HITEX 33/E7K8 Summary		
FORM:	U.S. Polymeric HITEX 33 6k/E7K8 u	nidirectional tape, gra	ade 145 prepreg			
FIBER:	Hitco HITEX 33 6k, no twist	MATRIX:	U.S. Polymeric E7	К8		
T _g (dry):	T _g (wet):	Tg METHOD:				
PROCESSING:	Autoclave cure: 300 - 310°F, 120 - 130 min., 55 psi					

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

Date of fiber manufacture	Date of testing	
Date of resin manufacture	Date of data submittal	1/83
Date of form manufacture	Date of analysis	1/93
Date of composite manufacture		

LAMINA PROPERTY SUMMARY

	75°F/A	-65°F/A	180°F/A	75°F/W	180°F/W	
Tension, 1-axis	SSSS	SS-S		SSS-	SSS-	
Tension, 2-axis	SS					
Tension, 3-axis						
Compression, 1-axis	SS-S	SS-S		SS	SS	
Compression, 2-axis						
Compression, 3-axis						
Shear, 12-plane	S		S	S	S	
Shear, 23-plane						
Shear, 31-plane						

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.80		
Resin Density	(g/cm ³)	1.27		
Composite Density	(g/cm ³)	1.59	1.56 - 1.61	
Fiber Areal Weight	(g/m ²)	145		
Fiber Volume	(%)	58.0	57 - 64	
Ply Thickness	(in)	0.0057	0.0053 - 0.0058	

LAMINATE PROPERTY SUMMARY

Volume 2, Chapter 4 Carbon Fiber Composites

DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL. *

MATERIA	<u>NE 1989). ALL DOC</u> AL: HITE	EX 33 6k/E7K8 ι					4.2.2(a)	
FIBER V			COMP: DE VOID CON		HITEX : Tensior [0	145-UT 33/E7K8 n, 1-axis] ₁₀ A, 75/1.5%		
TEST ME	ETHOD:		MODULUS	S CALCULATIO	N:	Screening		
AST	M D 3039-76							
NORMAL	_IZED BY: Fibe	r volume to 60%	6 (0.0057 in. C	PT)				
	ture (°F) Content (%) ım at T, RH	7: amb		-6 amb		7! 1. (1	5	
Source C		20	-	20		20)	
		Normalized	Measured	Normalized	Measured	Normalized	Measured	
	Mean Minimum Maximum C.V.(%)	313 292 339 4.80	304 283 330 4.84	296 267 327 9.19	288 259 319 9.20	318 280 345 7.63	310 272 335 7.65	
F ₁ ^{tu}	B-value Distribution	(2) Weibull	(2) Weibull	(2) Normal	(2) Normal	(2) Normal	(2) Normal	
(ksi)	C ₁ C ₂	320 22.2	311 21.9	296 27.2	288 26.5	318 24.3	310 23.7	
	No. Specimens No. Batches Data Class	20 1 Screening		5 1 Scree		5 1 Scree		
E_1^t	Mean Minimum Maximum C.V.(%)	18.2 17.5 19.0 2.58	17.7 17.0 18.5 2.60	18.5 18.1 18.6 1.06	18.0 17.7 18.1 1.07	18.5 18.3 18.7 0.79	18.0 17.8 18.2 0.79	
(Msi)	No. Specimens No. Batches Data Class	18 1 Scree		5 1 Scree		5 1 Scree		
v_{12}^{t}	Mean No. Specimens No. Batches	5 1	0.310		•	5 1	0.310	
	Data Class	Scree				Scree	ening	
	Mean Minimum Maximum C.V.(%)		15900 15200 17100 4.81		16100 15500 17000 3.61			
$oldsymbol{arepsilon}_1^{ ext{tu}}$	B-value Distribution		(2) Normal		(2) Normal			
(με)	C ₁ C ₂		15900 765		16200 582			
	No. Specimens No. Batches Data Class	5 1 Scree		5 1 Scree				

Volume 2, Chapter 4 Carbon Fiber Composites

DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS * (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERI	,		Table 4.2.2(b)			
FIBER V			COMP: DE VOID CON		1.58 g/cm ³ 0.0%	C/Ep 145-UT HITEX 33/E7K8 Tension, 1-axis [0] ₁₀ 180/1.5%
TEST ME	ETHOD:		MODULUS	S CALCUI	_ATION:	Screening
AST	M D 3039-76					
NORMAL	LIZED BY: Fibe	r volume to 60%	% (0.0057 in. C	PT)		
Temperature (°F) Moisture Content (%) Equilibrium at T, RH Source Code						
000.000		Normalized	Measured	Normal	zed Measured	Normalized Measured
	Mean Minimum Maximum C.V.(%)	308 296 318 2.65	300 288 309 2.65			
F ₁ ^{tu}	B-value Distribution	(2) Normal	(2) Normal			
(ksi)	$\begin{array}{c} C_1 \\ C_2 \end{array}$	308 8.17	300 7.95			
	No. Specimens No. Batches Data Class	Scree	l ening			
E_1^t	Mean Minimum Maximum C.V.(%)	18.7 17.8 19.5 3.64	18.2 17.3 19.0 3.65			
(Msi)	No. Specimens No. Batches Data Class	Scree	l			
v_{12}^{t}	Mean No. Specimens No. Batches	Ę	0.300			
	Data Class Mean Minimum Maximum C.V.(%)	Scree	ening			
$arepsilon_1^{ m tu}$ (µε)	B-value Distribution C ₁					
(µc)	C ₂					
	No. Specimens No. Batches Data Class					

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATER	RIAL: HITE	EX 33 6k/E7K8 u			Table	4.2.2(c)	
FIBER	CONTENT: 34 v VOLUME: 58 % HICKNESS: 0.00		COMP: DE VOID CON	ENSITY: NTENT:	1.58 g/cm ³ 0.39%	HITEX Tensio [9	145-UT 33/E7K8 n, 2-axis 0] ₂₀ 5/A
TEST	METHOD:		MODULUS	S CALCUL	ATION:		ening
AS	STM D 3039-76						
		normalized					
Moistur Equilib	rature (°F) re Content (%) rium at T, RH	75 ambient					
Source		20					
	Mean Minimum	6.90 5.58					
	Maximum	8.07					
	C.V.(%)	11.2					
	B-value	(1)					
F_2^{tu}	Distribution	Weibull					
(ksi)	C ₁	7.23					
	C ₂	10.9					
	No. Specimens	20					
	No. Batches	1					
	Data Class Mean	Screening 1.25					
	Minimum	1.23					
	Maximum	1.27					
E_2^t	C.V.(%)	0.977					
(Msi)	No. Specimens	20					
(10131)	No. Batches	1					
	Data Class	Screening					
	Mean						
v_{21}^{t}	No. Specimens No. Batches						
v 21	Data Class						
	Mean						
	Minimum						
	Maximum C.V.(%)						
t 1	B-value						
$\varepsilon_2^{ m tu}$	Distribution						
(με)	C ₁						
	C ₂						
	No. Specimens						
	No. Batches						
	Data Class						

(1) Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL. *

MATERIA	IE 1989). ALL DOC AL: HITE	EX 33 6k/E7K8 ι			13 NUT SUPP		4.2.2(d)
RESIN C FIBER VO	ONTENT: 34-3 OLUME: 57-5 CKNESS: 0.00	5 wt%	COMP: DE VOID CON	NSITY: 1.57		C/Ep 1 HITEX 3 Compress [0 75/A, -65//	145-UT 33/E7K8 sion, 1-axis] ₁₀ A, 75/1.5% ening
	MA SRM 1-88		mobolot	0,12002,1110		0010	g
NORMAL	IZED BY: Fibe	r volume to 60%	o (0.0057 in. C	PT)			
	Content (%) m at T, RH	75 ambi 20	ient	-6 amb 20	ient	75 1 (1 20	5)
Source C	oue	Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean Minimum Maximum C.V.(%)	209 168 234 9.41	204 164 228 9.41	230 209 254 7.98	224 204 248 8.04	198 178 217 8.13	193 174 211 8.03
F1 ^{cu} (ksi)	B-value Distribution C ₁	(2) Weibull 218	(2) Weibull 212	(2) Normal 230	(2) Normal 224	(2) Normal 198	(2) Normal 193
(KSI)	C_1 C_2	13.7	13.7	18.3	17.9	16.1	15.7
	No. Specimens No. Batches Data Class	20 1 Screening		5 1 Scree		5 1 Screening	
E_1^c	Mean Minimum Maximum C.V.(%)	17.1 16.1 17.8 2.89	16.2 15.2 16.8 2.94	17.9 17.5 18.1 1.23	16.9 16.5 17.1 1.35	18.0 17.5 18.8 3.04	17.0 16.6 17.8 5.59
(Msi)	No. Specimens No. Batches Data Class	20 1 Scree		5 1 Scree		5 1 Screening	
v_{12}^{c}	Mean No. Specimens No. Batches						
	Data Class Mean Minimum Maximum C.V.(%)		12600 12000 13400 2.92		13600 13600 13700 0.48		
$\varepsilon_1^{\rm cu}$	B-value Distribution C ₁		(2) Weibull 12800		(2) Normal 13600		
(με)	C_1 C_2		35.7		65.7		
	No. Specimens No. Batches Data Class	20 1 Scree		5 1 Scree			

Volume 2, Chapter 4 Carbon Fiber Composites

DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL. *

(301	NE 1969). ALL DOU		PRESENTLY	REQUIRE	D WAS NUT	SUPPL	ED FOR THIS MATERIAL.
MATERIA	AL: HITE	EX 33 6k/Ε7K8 ι	unidirectional ta	ape			Table 4.2.2(e)
FIBER V	OLUME: 57-5	35 wt% 8 % 57 in.	Comp: De Void Con		1.57-1.58 g/ 0.0%	′cm ³	C/Ep 145-UT HITEX 33/E7K8 Compression, 1-axis [0] ₁₀
TEST ME	THOD.		MODULUS	S CALCUI			180/1.5% Screening
	MA SRM 1-88		MODOLO	0,1000		l	corooning
		r volume to 60%	5 (0.0057 in. C	PT)			
Tempera		18	-	,		[
Moisture	Content (%) Im at T, RH	1.3 (1 20	5)				
		Normalized	Measured	Normali	zed Measu	ured	Normalized Measured
	Mean Minimum Maximum C.V.(%)	136 111 161 13.4	132 108 157 13.6				
F ₁ ^{cu}	B-value Distribution	(2) Normal	(2) Normal				
(ksi)	C ₁ C ₂	136 18.3	132 17.8				
	No. Specimens No. Batches Data Class	5 1 Scree					
E_1^c	Mean Minimum Maximum C.V.(%)	17.6 17.0 18.0 2.47	16.6 16.1 17.0 2.47				
(Msi)	No. Specimens No. Batches Data Class	5 1 Scree					
v_{12}^{c}	Mean No. Specimens No. Batches						
	Data Class Mean Minimum Maximum C.V.(%)						
$\varepsilon_1^{ m cu}$	B-value Distribution						
(με)	C ₁ C ₂						
	No. Specimens No. Batches Data Class						

Volume 2, Chapter 4 Carbon Fiber Composites

DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL. *

MATER	JNE 1989). ALL DOC RIAL: HITE	EX 33 6k/E7K8			4.2.2(f)		
RESIN FIBER	CONTENT: 29-3 VOLUME: 62-6	30 wt%	COMP: D VOID COI	ENSITY: 1.5	9-1.61 g/cm ³ 5-0.91%	C/Ep HITEX Shear, [(±45 75/A, 180/	145-UT 33/E7K8 12-plane) ₂ /45] _S A, 75/1.5%,
	METHOD:		MODULU	S CALCULATIO	ON:		1.5% ening
	STM D 3518-76 ALIZED BY: Not	normalized					
Moistur	rature (°F) re Content (%) rium at T, RH Code	75 ambient 20	180 ambient 20	75 1.5 (1) 20	180 1.5 (1) 20		
	Mean Minimum Maximum C.V.(%)	15.0 13.5 15.8 3.52	13.2 13.1 13.3 0.655	16.3 15.8 16.7 2.20	11.7 11.5 11.9 1.27		
F ₁₂ ^{su}	B-value Distribution	(2) Weibull	(2) Normal	(2) Normal	(2) Normal		
(ksi)	C ₁ C ₂	15.2 34.8	13.2 0.0865	16.3 0.357	11.7 0.148		
	No. Specimens No. Batches Data Class	20 1 Screening	5 1 Screening	5 1 Screening	5 1 Screening		
	Mean Minimum Maximum C.V.(%) B-value						
γ ^{su} (με)	Distribution						
(με)	C ₂						
	No. Specimens No. Batches Data Class						
G _s ¹²	Mean Minimum Maximum C.V.(%)						
(Msi)	No. Specimens No. Batches Data Class						

4.2.3 AS4 12k/E7K8 unidirectional tape

Material Description:

Material: AS4-12k/E7K8

- Form: Unidirectional tape, fiber areal weight of 145 g/m², typical cured resin content of 32-37%, typical cured ply thickness of 0.0054 inches.
- Processing: Autoclave cure; 300-310° F, 85 psi for 2 hours. Low exotherm profile for processing of thick parts.

General Supplier Information:

- Fiber: AS4 fibers are continuous carbon filaments made from PAN precursor, surface treated to improve handling characteristics and structural properties. Filament count is 12,000 filaments/tow. Typical tensile modulus is 34 x 10⁶ psi. Typical tensile strength is 550,000 psi. Good drape.
- Matrix: E7K8 is a medium flow, low exotherm epoxy resin. Good tack; up to 20 days out-time at ambient temperature.

Maximum Short Term Service Temperature: 300°F (dry), 190°F (wet)

Typical applications: Primary and secondary structural applications commercial and military aircraft, jet engine applications such as stationary airfoils and thrust reverser blocker doors.

4.2.3 AS4 12k/E7K8 unidirectional tape*

MATERIAL:	AS4 12k/E7K8 unidirectional tape			C/Ep 145-UT AS4/E7K8 Summary
FORM:	U.S. Polymeric AS4 12k/E7K8 unidired	ctional tape prepreg	-	
FIBER:	Hercules AS4 12k	MATRIX:	U.S. Polymeric E7K	(8
T _g (dry):	T _g (wet):	Tg METHOD:		
PROCESSING:	Autoclave cure: 300 - 310°F, 120 - 130	0 min., 55 psi		

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

Date of fiber manufacture	Date of testing	
Date of resin manufacture	Date of data submittal	1/88
Date of form manufacture	Date of analysis	1/93
Date of composite manufacture		

LAMINA PROPERTY SUMMARY

	75°F/A	-65°F/A	180°F/A	75°F/W	180°F/W	
Tension, 1-axis	SSSS	SS-S		SSSS	SSSS	
Tension, 2-axis	SS					
Tension, 3-axis						
Compression, 1-axis	SS-S	SS-S		SS	SS	
Compression, 2-axis						
Compression, 3-axis						
Shear, 12-plane	S		S	S	S	
Shear, 23-plane						
Shear, 31-plane						

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.80		
Resin Density	(g/cm ³)	1.28		
Composite Density	(g/cm ³)	1.59	1.52 - 1.59	
Fiber Areal Weight	(g/m ²)	145		
Fiber Volume	(%)	59.6	53 - 60	
Ply Thickness	(in)	0.0054	0.0054 - 0.0057	

LAMINATE PROPERTY SUMMARY

Volume 2, Chapter 4 Carbon Fiber Composites

DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL. *

(JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL. MATERIAL: AS4 12k/E7K8 unidirectional tape Table 4.2.3(a)										
MATERIA	AL: AS4	12k/E/K8 unidi	rectional tape				4.2.3(a) I45-UT			
RESIN CO	ONTENT: 32-3	7 wt%	COMP: DE	NSITY: 1.53	8-1.59 g/cm ³		E7K8			
FIBER VC			VOID CON	TENT: 0.64	-2.2%		n, 1-axis			
PLY THIC		54 in.]10			
						75/A, -65/A	Ā, 75/0.77%			
TEST ME	THOD:		MODULUS	S CALCULATIO	N:	Scre	ening			
AST	M D 3039-76		Slope	of initial linear p	ortion of load-o	displacement				
NORMAL	IZED BY: Fibe	r volume to 60%	curve (0.0054 in. C	PT)						
Temperat		75		-6	F	75				
	Content (%)	ambi		ambi		0.7				
	m at T, RH	anio	ion i	anio		(1				
Source C		20)	20)	20				
		Normalized	Measured	Normalized	Measured	Normalized	Measured			
	Mean	303	293	291	273	304	294			
	Minimum	253	252	255	239	286	276			
	Maximum	345	347	327	306	317	306			
	C.V.(%)	8.26	8.94	8.93	8.90	4.16	4.22			
	B-value	(2)	(2)	(2)	(2)	(2)	(2)			
F_1^{tu}	Distribution	ANOVA	ANOVA	Normal	Normal	Normal	Normal			
(ksi)		26.7	32.4	291	273	304	294			
(KSI)	C ₁ C ₂	4.40	52.4 7.49	291	273	12.7	12.2			
	U 2	7.70	1.70	20.0	27. 7	12.1	12.2			
	No. Specimens	20)	5		5				
	No. Batches	2		1		1				
	Data Class	Scree		Scree		Scree				
	Mean	19.3	18.7	20.1	18.8	19.6	18.9			
	Minimum Maximum	18.5 21.3	17.4 21.4	19.7 20.6	18.4 19.3	19.0 20.1	18.4 19.4			
ъt	C.V.(%)	3.79	21.4 6.10	20.6	19.3	20.1	19.4			
E_1^t	0. v.(70)	5.75	0.10	1.07	1.75	2.04	1.30			
(Msi)	No. Specimens	20)	5		5				
(No. Batches	2		1		1				
	Data Class	Scree	ning	Scree	ning	Scree				
	Mean		0.320				0.288			
	No. Specimens	5				5				
v_{12}^t	No. Batches	1				1				
	Data Class	Scree				Scree				
	Mean		13900		13500		14600			
	Minimum		12500		12000		13700			
	Maximum		16000 11.0		14800		15000 3.83			
	C.V.(%)		11.0		8.24		3.63			
	B-value		(2)		(2)		(2)			
$arepsilon_1^{ ext{tu}}$	Distribution		Normal		Normal		Normal			
	C ₁		13900		13500		14600			
(με)	C_1 C_2		1530		1110		561			
	\mathbf{U}_2		1000		1110		501			
	No. Specimens	5		5		5				
	No. Batches	1		1		1				
	Data Class	Scree	ning	Scree	ning	Scree	ening			

Volume 2, Chapter 4 Carbon Fiber Composites

DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL. *

MATERIA		12k/E7K8 unid					Table 4.2.3(b)
FIBER V	OLUME: 53-6	7 wt% 0 % 54 in.	COMP: DE VOID CON	1.59 g/cm ³ ·2.2%	C/Ep 145-UT AS4/E7K8 Tension, 1-axis [0] ₁₀ 180/0.77%		
TEST ME	ETHOD:		MODULU	S CALCUI		1:	Screening
AST	M D 3039-76			of initial li	near po	ortion of load-	displacement
NORMAL	_IZED BY: Fibe	r volume to 60%	curve 6 (0.0054 in. C	PT)			
	Content (%) Im at T, RH	18 0.7 (1 2	I)				
		Normalized	Measured	Normal	zed	Measured	Normalized Measured
	Mean Minimum Maximum C.V.(%)	310 284 326 5.87	296 274 306 4.76				
F ₁ ^{tu}	B-value Distribution	(2) Normal	(2) Normal				
(ksi)	$C_1 \\ C_2$	310 18.2	296 13.9				
	No. Specimens No. Batches Data Class	5 1 Scree	l ening				
$\mathrm{E}_{1}^{\mathrm{t}}$	Mean Minimum Maximum C.V.(%)	20.1 19.1 21.8 5.65	19.2 18.5 20.4 4.01				
(Msi)	No. Specimens No. Batches Data Class	5 1 Scree	l				
v_{12}^{t}	Mean No. Specimens No. Batches	5	l				
	Data Class Mean Minimum Maximum C.V.(%)	Scree	ening 14600 13900 15400 4.21				
$m{arepsilon}_1^{ ext{tu}}$	B-value Distribution		(2) Normal				
(με)	C_1 C_2		14600 616				
	No. Specimens No. Batches Data Class	5 1 Scree	l				

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATER	,	4 12k/E7K8 unidire			WAS NOT SUPPL	Table	4.2.3(c)
FIBER	VOLUME: 53-0	38 wt% 60 % 057 in.	COMP: DEN VOID CONT	NSITY: FENT:	1.54-1.59 g/cm ³ 0.64-0.75%	C/Ep 145-UT AS4/E7K8 Tension, 2-axis [90] ₂₀ 75/A	
TEST N	IETHOD:		MODULUS	CALCULA	ATION:	Scre	ening
AS	STM D 3039-76		-	initial line	ar portion of load-di	splacement	
NORM	ALIZED BY: Not	normalized	curve				
Moistur Equilibr	rature (°F) e Content (%) ium at T, RH	75 ambient					
Source		20					
	Mean Minimum	5.47 4.10					
	Maximum	7.01					
	C.V.(%)	13.2					
F ₂ ^{tu}	B-value Distribution	(1) Weibull					
г ₂ (ksi)	C ₁	5.79					
(KSI)	C_1 C_2	8.04					
	No. Specimens	20					
	No. Batches	1					
	Data Class	Screening					
	Mean Minimum	1.23 1.16					
	Maximum	1.32					
E_2^t	C.V.(%)	3.76					
(Msi)	No. Specimens	20					
	No. Batches	1					
	Data Class Mean	Screening					
v_{21}^{t}	No. Specimens No. Batches						
	Data Class						
	Mean Minimum Maximum C.V.(%)						
	0.0.(70)						
$arepsilon_2^{ ext{tu}}$	B-value Distribution						
(με)	C ₁						
	C ₂						
	No. Specimens No. Batches Data Class						

(1) Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL. *

MATERIA	I <u>E 1989). ALL DOC</u> AL: AS4	12k/E7K8 unidi		KEQUIKED WA	AS NOT SUPP	Table	4.2.3(d)
FIBER VO PLY THIO	OLUME: 51-5 CKNESS: 0.00	0 wt% 7 % 54 in.	COMP: DE VOID CON	ITENT: 1.4-	2-1.58 g/cm ³ 2.3%	C/Ep 145-UT AS4/E7K8 Compression, 1-axis [0] ₁₀ 75/A, -65/A, 75/0.77%	
TEST ME				S CALCULATIO			ening
SAC	MA SRM 1-88		-	of initial linear p	ortion of load-	displacement	
NORMAL	IZED BY: Fibe	r volume to 60%	curve 6 (0.0054 in. C				
Equilibriu	Content (%) m at T, RH	75 amb	ient	-6 amb	ient	7! 0.7 (1	77)
Source C	ode	20 Normalized) Measured	20 Normalized	Measured	20 Normalized	Measured
	Mean Minimum Maximum C.V.(%)	245 207 269 8.00	209 176 229 7.80	276 251 299 6.57	235 213 254 6.60	215 196 238 7.78	182 166 202 7.75
F_1^{cu}	B-value Distribution	(2) Weibull	(2) Weibull	(2) Normal	(2) Normal	(2) Normal	(2) Normal
(ksi)	C ₁ C ₂	254 16.3	216 16.3	276 18.1	235 15.4	215 16.7	183 14.2
	No. Specimens No. Batches Data Class	20 1 Screening		5 1 Scree	ening	5 1 Screening	
E_1^c	Mean Minimum Maximum C.V.(%)	19.0 17.3 20.4 4.58	17.9 16.3 19.2 4.54	17.6 16.6 18.0 3.16	16.5 15.7 17.0 3.14	18.5 17.7 19.0 2.95	17.4 16.7 17.9 2.86
(Msi)	No. Specimens No. Batches Data Class	2(1 Scree		5 1 Screening		5 1 Screening	
v_{12}^{c}	Mean No. Specimens No. Batches						
	Data Class Mean Minimum Maximum C.V.(%)		11700 10800 13100 4.81		14400 13900 15100 3.89		
$\varepsilon_1^{ m cu}$	B-value Distribution		(2) Normal		(2) Normal		
(με)	C ₁ C ₂		11700 564		14400 559		
	No. Specimens No. Batches Data Class	20 1 Scree		5 1 Scree			

Volume 2, Chapter 4 Carbon Fiber Composites

DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL. *

		NOT SUPPL	LIED FOR THIS MATERIAL.							
MATERIA	AL: AS4	12k/E7K8 unidi	rectional tape				Table 4.2.3(e)			
RESIN C		10 wt%	COMP: DE		1 50_1	.58 g/cm ³	C/Ep 145-UT AS4/E7K8			
FIBER VO		57 %	VOID CON		1.4-2.3	.50 g/cm 3%	Compression, 1-axis			
PLY THIC)54 in.		[0] ₁₀						
					180/0.77%					
TEST ME			MODULU				Screening			
SAC	MA SRM 1-88	tion of load-c	lisplacement							
NORMAL	IZED BY: Fibe	er volume to 60%	curve 5 (0.0054 in, C							
Temperat		18								
	Content (%) m at T, RH	0.7								
Source C		20								
		Normalized	Measured	Normali	zed I	Measured	Normalized Measured			
	Mean	150	127							
	Minimum	125 176	106 150							
	Maximum C.V.(%)	176	150 15.0							
	····(···)									
	B-value	(2)	(2)							
F_1^{cu}	Distribution	Normal	Normal							
(ksi)	C ₁	150	127							
	C ₂	22.2	18.9							
	No. Specimens	5	i							
	No. Batches	1								
	Data Class	Scree	-							
	Mean Minimum	18.0 17.4	17.0 16.4							
	Maximum	18.4	17.3							
E_1^c	C.V.(%)	2.46	2.41							
1										
(Msi)	No. Specimens	5								
	No. Batches Data Class	1 Scree								
	Mean	00166	,y							
	No. Specimens									
v_{12}^{c}	No. Batches									
	Data Class									
	Mean									
	Minimum Maximum									
	C.V.(%)									
cu	B-value Distribution									
ε_1^{cu}										
(με)	C ₁									
	C ₂									
	No. Specimens									
	No. Batches									
	Data Class									

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATER		4 12k/E7K8 unid				Table 4.2.3(f)
FIBER	VOLUME: 55-	36 wt% 57 % 055 in.	Comp: d Void Co	ENSITY: 1.5 NTENT: 1.9	4-1.55 g/cm ³ -2.3%	C/Ep 145-UT AS4/E7K8 Shear, 12-plane [(±45) ₂ /45] _S 75/A, 180/A, 75/0.77%,
			MODULU	S CALCULATI	ON:	180/0.77% Screening
	STM D 3518-76 ALIZED BY: No	t normalized				
			400		400	1
Moistur Equilibr	rature (°F) e Content (%) rium at T, RH	75 ambient	180 ambient	75 0.77 (1)	180 0.77 (1)	
Source	Code Mean	20 16.5	20 14.6	20 15.1	20 13.4	
	Minimum	13.8	14.0	13.5	13.4	
	Maximum	17.0	14.9	15.8	13.8	
	C.V.(%)	6.41	1.90	6.04	2.44	
F ₁₂ ^{su}	B-value Distribution	(2) ANOVA	(2) Normal	(2) Normal	(2) Normal	
(ksi)	C ₁ C ₂	2.46 7.58	14.6 0.277	15.1 0.905	13.4 0.328	
	No. Specimens No. Batches Data Class	20 2 Screening	5 1 Screening	5 1 Screening	5 1 Screening	
G ^s ₁₂	Mean Minimum Maximum C.V.(%)					
(Msi)	No. Specimens No. Batches					
	Data Class Mean					
	Minimum Maximum C.V.(%)					
γ_{12}^{su}	B-value Distribution					
(με)	C ₁ C ₂					
	No. Specimens No. Batches Data Class					

(1) Conditioned for 14 days at 160°F, 85% RH.

(2) Basis values are presented only for A and B data classes.

4.2.4 Celion 12k/E7K8 unidirectional tape

Material Description:

Material: Celion-12k/E7K8

- Form: Unidirectional tape, fiber areal weight of 280 g/m², typical cured resin content of 29-33%, typical cured ply thickness of 0.011 inches.
- Processing: Autoclave cure; 300-310°F, 55 psi for 2 hours. Low exotherm profile for processing of thick parts.

General Supplier Information:

- Fiber: Celion fibers are continuous carbon filaments made from PAN precursor. Filament count is 12,000 filaments/tow. Typical tensile modulus is 34 x 10⁶ psi. Typical tensile strength is 515,000 psi. Good drape.
- Matrix: E7K8 is a medium flow, low exotherm epoxy resin. Good tack; up to 20 days out-time at ambient temperature.

Maximum Short Term Service Temperature: 300°F (dry), 190°F (wet)

Typical Applications: Primary and secondary structural applications on commercial and military aircraft.

4.2.4 Celion 12k/E7K8 unidirectional tape*

MATERIAL:	Celion 12k/E7K8 unidirectional tape			C/Ep 280-UT Celion 12k/E7K8 Summary
FORM:	U.S. Polymeric Celion 12k/E7K8 unid	rectional tape, grad	e 280 prepreg	
FIBER:	Celanese Celion 12k, no twist	E7K8		
T _g (dry):	T _g (wet):	Tg METHOD:		
PROCESSING:	Autoclave cure: 300 - 310°F, 120 - 13	0 min., 55 psi		

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

Date of fiber manufacture	Date of testing	
Date of resin manufacture	Date of data submittal	1/88
Date of form manufacture	Date of analysis	1/93
Date of composite manufacture		

LAMINA PROPERTY SUMMARY

	75°F/A	-65°F/A	180°F/A	75°F/W	180°F/W	
Tension, 1-axis	SSSS	SS-S		SSS-	SSSS	
Tension, 2-axis	SS					
Tension, 3-axis						
Compression, 1-axis	SS-S	SS-S		SS	SS	
Compression, 2-axis						
Compression, 3-axis						
Shear, 12-plane	S		S	S	S	
Shear, 23-plane						
Shear, 31-plane						

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.8		
Resin Density	(g/cm ³)	1.28		
Composite Density	(g/cm ³)	1.59	1.59 - 1.61	
Fiber Areal Weight	(g/m ²)	280		
Fiber Volume	(%)	59.6	59 - 64	
Ply Thickness	(in)	0.011	0.010 - 0.011	

LAMINATE PROPERTY SUMMARY

Volume 2, Chapter 4 Carbon Fiber Composites

DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL. *

MATERI	NE 1989). ALL DOO				AS NOT SUPP		
	ONTENT: 29 w	on 12k/E7K8 un #%	COMP: DE		g/cm ³	C/Ep 2	4.2.4(a) 280-UT n E7K8
FIBER V	OLUME: 63-6	64 %	VOID CON		8-1.0%	Tensio	n, 1-axis
PLY THI	CKNESS: 0.01	1 in.)]₅ A, 75/0.77%
TEST ME	ETHOD:		MODULUS		ening		
AST	M D 3039-76						
NORMAL	LIZED BY: Fibe	r volume to 60%	5 (0.011 in. CP	Т)			
Tempera		75		-6		7	
	Content (%) um at T, RH	amb	ient	amb	ient	0.7 (1	
Source C		20		20		20	0
	Maan	Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean Minimum	293 265	309 285	281 268	302 287	300 292	314 306
	Maximum	317	332	307	330	315	330
	C.V.(%)	4.52	4.52	5.44	5,44	3.22	3.60
	B-value	(2)	(2)	(2)	(2)	(2)	(2)
F_1^{tu}	Distribution	Weibull	Weibull	Normal	Normal	Normal	Normal
(ksi)	C ₁	299	316	281	302	300	314
	C ₂	25.6	25.9	15.3	16.4	9.67	10.1
	No. Specimens	20		5		5	
	No. Batches Data Class	1 Screening		1 Scree		1 Scree	
	Mean	20.0	21.1	19.2	20.6	19.0	19.9
	Minimum Maximum	18.7 21.9	20.1 23.0	18.6 20.3	20.0 21.8	18.5 20.0	19.4 21.0
E_1^t	C.V.(%)	4.48	4.25	3.40	3.80	3.22	3.60
21							
(Msi)	No. Specimens	20		5		5	
	No. Batches Data Class	Scree		Scree		Scree	
	Mean		0.286		-		0.292
v_{12}^{t}	No. Specimens No. Batches	5				5	
r 12	Data Class	Scree				Scree	
	Mean		14300		14800		~
	Minimum Maximum		13500 14700		14200 15800		
	C.V.(%)		3.34		3.87		
	B-value		(2)		(2)		
$\varepsilon_1^{ m tu}$	B-value (2) E ^{tu} Distribution Norm		(2) Normal		(2) Normal		
(με)	C ₁		14300		14800		
(1)	C ₂		478		573		
	No. Specimens	5		5			
	No. Batches	1		1			
	Data Class	Scree	ening	Scree	ening		

Volume 2, Chapter 4 Carbon Fiber Composites

DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS * (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERI	,	on 12k/E7K8 ur				Table 4.2.4(b)
FIBER V	CONTENT: 29 w OLUME: 63-6 CKNESS: 0.01	4 %	COMP: DE VOID CON	C/Ep 280-UT Celion E7K8 Tension, 1-axis [0]₅ 180/0.77%		
TEST ME	ETHOD:	Screening				
AST	M D 3039-76					
NORMAL	LIZED BY: Fibe	r volume to 60%	% (0.011 in. CP	'T)		
	Content (%) um at T, RH	0.	80 77 1) 20			
Oburbe e		Normalized	Measured	Normali	zed Measure	d Normalized Measured
	Mean Minimum Maximum C.V.(%)	293 269 316 6.43	311 286 335 7.19			
F ₁ ^{tu}	B-value Distribution	(2) Normal	(2) Normal			
(ksi)	C ₁ C ₂	293 18.9	311 20.0			
	No. Specimens No. Batches Data Class		5 1 ening			
E_1^t	Mean Minimum Maximum C.V.(%)	19.8 19.4 20.1 1.61	21.0 20.6 21.4 1.81			
(Msi)	No. Specimens No. Batches Data Class		5 1 ening			
v_{12}^{t}	Mean No. Specimens No. Batches		0.322 5 1			
	Data Class Mean	Scre	ening 13800			
	Minimum Maximum C.V.(%)		12300 15400 10.4			
$oldsymbol{arepsilon_1}^{ ext{tu}}$	B-value Distribution		(2) Normal			
(με)	C ₁ C ₂		13800 1440			
	No. Specimens No. Batches Data Class		5 1 ening			

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATER	,		CUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR T on 12k/E7K8 unidirectional tape Tal						
FIBER	VOLUME: 59-6	33 wt% 61 % 1 in.	COMP: DEN VOID CONT	NSITY: 1.5 ENT: 0.6	9-1.60 g/cm ³ 8-0.74%	C/Ep 280-UT Celion /E7K8 Tension, 2-axis [90] ₁₂ 75/A			
	METHOD: STM D 3039-76	ON:	Scre	ening					
NORM	ALIZED BY: Not	normalized							
Moistur Equilibr	rature (°F) re Content (%) rium at T, RH	75 ambient							
Source	Code	20							
	Mean Minimum Maximum C.V.(%)	6.00 5.21 6.89 8.79							
	B-value	(1)							
F_2^{tu}	Distribution	Weibull							
(ksi)	C ₁ C ₂	6.24 12.6							
	No. Specimens No. Batches	20 1							
	Data Class Mean	Screening 1.28							
	Minimum	1.19							
E_2^t	Maximum C.V.(%)	1.36 4.52							
(Msi)	No. Specimens No. Batches Data Class	20 1 Screening							
v_{21}^{t}	Mean No. Specimens No. Batches								
21	Data Class								
	Mean Minimum Maximum C.V.(%)								
$arepsilon_2^{ ext{tu}}$	B-value Distribution								
(με)	C ₁ C ₂								
	No. Specimens No. Batches Data Class								

(1) Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL. *

MATERIA			JMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL. 12k/E7K8 unidirectional tape Table 4.2.4(d)								
	ONTENT: 29-3	0 wt%	COMP: DE VOID CON	NSITY: 1.60)-1.61 g/cm ³ 3-0.79%	C/Ep 2 Celior	280-UT 1 E7K8				
	CKNESS: 0.01	Compression, 1-axis [0]₅									
TEST METHOD: MODULUS CALCULATION:							A, 75/0.77% ening				
	- 110D. CMA SRM 1-88		MODULU	5 CALCULATIO	IN.	0016	ennig				
NORMAL	LIZED BY: Fibe	r volume to 60%	o (0.011 in. CP	1)							
Tempera	iture (°F) Content (%)	75 amb		-6 amb		75 0.7					
	um at T, RH	anno	lent	and	lent	(1					
Source C		20	-	20		20)				
	Maan	Normalized	Measured	Normalized	Measured	Normalized	Measured				
	Mean Minimum	206 171	213 177	221 198	229 205	207 198	214 205				
	Maximum	247	255	267	276	219	203				
	C.V.(%)	8.62	8.62	12.2	12.2	5.06	5.06				
	B-value	(2)	(2)	(2)	(2)	(2)	(2)				
F_1^{cu}	Distribution	Weibull	Weibull	Normal	Normal	Normal	Normal				
(ksi)	C ₁	214	221	221	228	207	214				
	C ₂	12.1	12.1	27.0	28.0	10.5	10.8				
	No. Specimens	20		5		5					
	No. Batches Data Class	1 Scree		1 Scree		1 Scree					
	Mean	19.9	21.1	22.9	24.3	21.6	22.3				
	Minimum	18.1	19.2	20.8	22.0	20.2	21.0				
- 0	Maximum	21.7	22.3	23.8	25.1	22.8	23.6				
E_1^c	C.V.(%)	4.95	5.08	5.28	5.90	5.25	5.86				
(Msi)	No. Specimens	20)	5	5	5					
	No. Batches Data Class	1 Scree		1 Scree		1 Screening					
	Mean	00100	annig	Ocree	anng	00100	annig				
2	No. Specimens										
v_{12}^{c}	No. Batches										
	Data Class Mean		11200		9870						
	Minimum		10800		9210						
	Maximum C.V.(%)		11800 3.59		10600 5.32						
	U. v. (/0)										
CII	B-value Distribution		(2) Normal		(2) Normal						
$\varepsilon_1^{\rm cu}$			Normal 11200								
(με)	C ₁ C ₂		401		9870 526						
		_		_							
	No. Specimens No. Batches	5		5							
	Data Class	Scree		Scree							

Volume 2, Chapter 4 Carbon Fiber Composites

DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL. *

MATERI	,	on 12k/E7K8 un					LIED FOR THIS MATERIAL. Table 4.2.4(e)
FIBER V	OLUME: 62-6	80 wt% 64 % 0 in.	COMP: DE VOID CON	C/Ep 280-UT Celion E7K8 Compression, 1-axis [0]₅ 180/0.77%			
TEST ME	ETHOD:	Screening					
SAC	CMA SRM 1-88						
NORMAL	LIZED BY: Fibe	er volume to 60%	6 (0.011 in. CP	T)			
	Content (%) Im at T, RH	18 0.7 (1 2	77)				
		Normalized	Measured	Normal	ized	Measured	Normalized Measured
	Mean Minimum Maximum C.V.(%)	185 158 220 12.9	192 164 228 12.9				
F ₁ ^{cu}	B-value Distribution	(2) Normal	(2) Normal				
(ksi)	$C_1 \\ C_2$	185 24.0	192 24.8				
	No. Specimens No. Batches Data Class	5 1 Scree	ening				
E ₁ ^c	Mean Minimum Maximum C.V.(%)	21.1 19.5 23.1 6.80	22.3 20.6 24.5 7.63				
(Msi)	No. Specimens No. Batches Data Class	5 1 Scree					
v_{12}^{c}	Mean No. Specimens No. Batches						
	Data Class Mean Minimum Maximum C.V.(%)						
ε_1^{cu}	B-value Distribution						
(με)	C ₁ C ₂						
	No. Specimens No. Batches Data Class						

Volume 2, Chapter 4 Carbon Fiber Composites

DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL. *

MATER	JNE 1989). ALL DOO RIAL · Celi	on 12k/E7K8 un	AS NOT SOLLE		4.2.4(f)		
RESIN FIBER	CONTENT: 30-3 VOLUME: 61-6	31 wt% 32 % 1 in.	COMP: D VOID COI	ENSITY: 1.6	0 g/cm ³ 1-0.61%	C/Ep 2 Celior Shear, 1 [±45 75/A, 180/A	280-UT E7K8 2-plane /45] _s A, 75/0.77%,
	METHOD: STM D 3518-76		MODULU	S CALCULATIO	ON:		077% ening
NORM	ALIZED BY: Not	normalized					
Moistur	rature (°F) re Content (%) rium at T, RH Code	75 ambient 20	180 ambient 20	75 0.77 (1) 20	180 0.77 (1) 20		
	Mean Minimum Maximum C.V.(%)	9.9 9.3 11.1 4.16	10.0 8.1 11.1 11.7	12.0 11.3 12.3 3.41	10.0 8.2 11.4 11.7		
F ₁₂ (ksi)	B-value Distribution C_1 C_2	(2) Nonpara. 10 1.25	(2) Normal 10.0 1.17	(2) Normal 12.0 0.407	(2) Normal 10.0 1.17		
	No. Specimens No. Batches Data Class	20 1 Screening	5 1 Screening	5 1 Screening	5 1 Screening		
G ^s ₁₂	Mean Minimum Maximum C.V.(%)						
(Msi)	No. Specimens No. Batches Data Class						
	Mean Minimum Maximum C.V.(%)						
γ ^{su} (με)	B-value Distribution C ₁ C ₂						
	No. Specimens No. Batches Data Class						

4.2.5 AS4 12k/938 unidirectional tape

Material Description:

Material: AS4-12k/938

Form: Unidirectional tape, fiber areal weight of 145 g/m², typical cured resin content of 35-49%, typical cured ply thickness of 0.0055 inches.

Processing: Autoclave cure; 350°F, 85 psi for 2 hours.

General Supplier Information:

Fiber: AS4 fibers are continuous carbon filaments made from PAN precursor, surface treated to improve handling characteristics and structural properties. Filament count is 12,000 filaments/tow. Typical tensile modulus is 34 x 10⁶ psi. Typical tensile strength is 550,000 psi.

Matrix: 938 is an epoxy resin. 10 days out-time at 72°F.

Maximum Short Term Service Temperature: 350°F (dry), 200°F (wet)

Typical applications: Commercial and military structural applications

4.2.5 AS4 12k/938 unidirectional tape*

MATERIAL:	AS4 12k/938 unidirectional tape	C/Ep 145-UT AS4/938 Summary
FORM:	Fiberite Hy-E 1338H unidirectional tape, grade 145 prepreg	
FIBER:	Hercules AS4 12k, unsized, no twist MATRIX: Fiberite 938	
T _g (dry):	T_g (wet): 260°F T_g METHOD:	
PROCESSING:	Autoclave cure: 350 ± 10°F, 120 - 135 min., 100 ± 15 psi	

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

Date of fiber manufacture	Date of testing	8/85
Date of resin manufacture	Date of data submittal	4/89
Date of form manufacture 7/85	Date of analysis	1/93
Date of composite manufacture		

LAMINA PROPERTY SUMMARY

	75°F/A	-65°F/A	200°F/A	200°F/W	
Tension, 1-axis	II	II	II		
Tension, 2-axis	II		II		
Tension, 3-axis					
Compression, 1-axis	II			II	
Compression, 2-axis	S				
Compression, 3-axis					
Shear, 12-plane	S		I		
Shear, 23-plane					
Shear, 31-plane					

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.80	1.77 - 1.79	
Resin Density	(g/cm ³)	1.30	1.30	
Composite Density	(g/cm ³)	1.60	1.55 - 1.58	
Fiber Areal Weight	(g/m ²)	145	144 - 146	
Fiber Volume	(%)	60	52 - 60	
Ply Thickness	(in)	0.0055	0.0048 - 0.0065	

LAMINATE PROPERTY SUMMARY

Volume 2, Chapter 4 Carbon Fiber Composites

DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL. *

MATERI	AL: AS4	12k/938 unidire				Table	Table 4.2.5(a) C/Ep 145-UT	
FIBER V	N CONTENT: 35-41 wt% COMP: DENSITY: 1.55-1.57 g/cm ³ R VOLUME: 52-57 % VOID CONTENT: 0.0-<1.0%					AS Tensio [AS4/938 Tension, 1-axis [0] ₈ 75/A, -65/A, 200/A	
TEST ME	ETHOD:		MODULUS	S CALCULATIC	DN:		erim	
AST	M D 3039-76 (1)							
NORMAL	LIZED BY: Spec	cimen thickness	and batch fibe	er volume to 609	% (0.0053 in. C	PT)		
	ture (°F) Content (%) ım at T, RH	7 amb	5 bient		65 bient		00 bient	
Source C			2	1	2	1	2	
		Normalized	Measured	Normalized	Measured	Normalized	Measured	
	Mean Minimum Maximum C.V.(%)	314 270 351 7.45	272 230 330 8.79	296 198 363 14.4	238 174 287 11.0	321 263 356 7.79	274 229 322 8.10	
F ₁ ^{tu}	B-value Distribution	(2) Weibull	(2) ANOVA	(2) ANOVA	(2) ANOVA	(2) ANOVA	(2) Weibull	
(ksi)	C ₁ C ₂	324 16.5	26.3 4.12	49.1 4.64	249 11.1	26.9 3.78	284 13.3	
	No. Specimens No. Batches Data Class	22 3 Interim			2 3 erim	20 3 Interim		
E_1^t	Mean Minimum Maximum C.V.(%)	22.4 18.8 26.9 9.88	19.4 17.1 21.0 4.66	19.5 18.5 21.5 4.07	19.0 16.9 22.0 5.13	20.4 18.4 24.0 7.23	20.8 18.4 22.4 6.06	
(Msi)	No. Specimens No. Batches Data Class	22 3 Interim		2 S Inte	3	20 3 Interim		
v_{12}^{t}	Mean No. Specimens No. Batches							
	Data Class Mean Minimum Maximum C.V.(%)							
$\boldsymbol{arepsilon}_1^{ ext{tu}}$	B-value Distribution							
(με)	C ₁ C ₂							
	No. Specimens No. Batches Data Class							

(1) Gage length 2.0 inches.(2) Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL. *

MATER		4 12k/938 unidire				LIED FOR THIS MATERIAL. Table 4.2.5(b) C/Ep 145-UT
FIBER	VOLUME: 52-	40 wt% 58 % 053-0.0063 in.	COMP:DI VOID CO		AS4/938 Tension, 2-axis [90] ₁₆ 75/A, 200/A	
	METHOD: STM D 3039-76 (1)		MODULU	IS CALCUL	_ATION:	Interim
		t normalized				
				1		
Moistur Equilib	rature (°F) re Content (%) rium at T, RH	75.0 ambient	200 ambient			
Source		12	12			
	Mean Minimum Maximum C.V.(%)	8.96 6.50 12.0 15.2	8.84 6.85 10.3 12.2			
F ₂ ^{tu}	B-value Distribution	(2) Weibull	(2) ANOVA			
(ksi)	C ₁ C ₂	9.54 7.10	1.18 3.96			
	No. Specimens No. Batches Data Class	19 3 Interim	17 3 Interim			
E_2^t	Mean Minimum Maximum C.V.(%)	1.29 0.970 1.72 7.89	1.23 1.05 1.40 7.81			
(Msi)	No. Specimens No. Batches Data Class	19 3 Interim	17 3 Interim			
v_{21}^{t}	Mean No. Specimens No. Batches					
	Data Class Mean Minimum Maximum C.V.(%)					
$arepsilon_2^{ ext{tu}}$	B-value Distribution					
(με)	C ₁ C ₂					
	No. Specimens No. Batches Data Class					

(1) Gage length 2.0 inches.
 (2) Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS * (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERI	<u>NE 1989). ALL DOC</u> AL: AS4	12k/938 unidire			Table	4.2.5(c)		
FIBER V	OLUME: 54-6	8 wt% 0 % 48-0.0060 in.	COMP: DENSITY: 1.55-1.58 g/cm ³ VOID CONTENT: 0.0-<1.0%			AS4 Compress	C/Ep 145-UT AS4/938 Compression, 1-axis [0] ₈ 75/A, 200/W	
TEST ME	ETHOD:		MODULUS	S CALCULATIC	DN:		200/W Screening	
	CMA SRM 1-88						Ŭ	
NORMAL	LIZED BY: Spec	cimen thickness	and batch fibe	er volume to 60°	% (0.0053 in. CF	PT)		
Equilibriu	Content (%) um at T, RH	7 amb	ient	(<i>*</i> 140°F	00 1) 7, 95%			
Source C	Jode	12 Normalized	Z Measured	Normalized	2 Measured	Normalized	Measured	
	Mean Minimum Maximum C.V.(%)	228 186 265 9.31	211 172 251 10.2	190 158 223 8.96	168 138 194 9.29			
F ₁ ^{cu}	B-value Distribution	(2) Weibull	(2) ANOVA	(2) ANOVA	(2) ANOVA			
(ksi)	$\begin{array}{c} C_1 \\ C_2 \end{array}$	224 12.5	22.4 3.31	19.0 4.40	17.6 4.57			
	No. Specimens No. Batches Data Class	25 3 Inte		24 3 Interim				
E ₁ ^c	Mean Minimum Maximum C.V.(%)	18.2 15.7 21.0 9.13	18.4 15.9 22.5 12.4	19.1 16.9 24.0 12.8	18.4 16.6 21.0 9.10			
(Msi)	No. Specimens No. Batches Data Class	1t 2 Inte		13 2 Screening				
v_{12}^{c}	Mean No. Specimens No. Batches							
	Data Class Mean Minimum Maximum C.V.(%)							
$\varepsilon_1^{\rm cu}$	B-value Distribution							
(με)	C ₁ C ₂							
	No. Specimens No. Batches Data Class							

Specimens conditioned for one month.
 Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATER	<i>i</i>	1 12k/938 unidire	tional tape		Table 4.2.5(c C/Ep 145-U	d)	
FIBER	CONTENT: 36 v VOLUME: 56 v HICKNESS: 0.00			1.56 g/cm ³ 0.0%	AS4/938 Compression, 2-axis [90]₃ 75/A		
TEST	METHOD:		MODULUS CALCULA	ATION:	Screening		
SA	ACMA SRM 1-88						
NORM	ALIZED BY: Not	normalized					
Moistur	rature (°F) re Content (%) rium at T, RH Code	75.0 ambient 12					
	Mean Minimum Maximum C.V.(%)	30.4 26.2 39.7 16.4					
F2 ^{cu} (ksi)	B-value Distribution C ₁	(1) Nonpara. 6					
(((3))	C_2	2.14					
	No. Specimens No. Batches	10 1					
	Data Class Mean	Screening					
E ^c ₂	Minimum Maximum C.V.(%)						
(Msi)	No. Specimens No. Batches Data Class						
v_{21}^{c}	Mean No. Specimens No. Batches						
	Data Class Mean Minimum Maximum C.V.(%)						
$arepsilon_2^{ m cu}$	B-value Distribution						
(με)	C ₁ C ₂						
	No. Specimens No. Batches Data Class						

(1) Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATER	RIAL: AS4	12k/938 unidire				Table 4	.2.5(e)
FIBER	CONTENT: 35-3 VOLUME: 54-5 IICKNESS: 0.00	1.56-1.58 g/cm ³ 0.0-<1.0%	C/Ep 145-UT AS4/938 Shear, 12-plane [±45]₂s 75/A, 200/A				
TEST N	IETHOD:		MODULU	S CALCUL	_ATION:	Interim, So	
AS	STM D 3518-76						
NORM	ALIZED BY: Not	normalized					
	rature (°F)	75.0	200				
Equilibr	e Content (%) rium at T, RH	ambient	ambient				
Source		12	12				
	Mean Minimum	13.0 10.8	13.9 11.9				
	Maximum	13.9	16.0				
	C.V.(%)	6.36	7.63				
F ₁₂ ^{su}	B-value Distribution	(1) Weibull	(1) ANOVA				
(ksi)	C ₁ C ₂	13.4 25.4	1.26 4.96				
	No. Specimens No. Batches Data Class	13 3 Screening	18 3 Interim				
	Mean						
	Minimum Maximum						
G ^s ₁₂	C.V.(%)						
(Msi)	No. Specimens No. Batches Data Class						
	Mean Minimum Maximum C.V.(%)						
γ_{12}^{su}	B-value Distribution						
(με)	C ₁ C ₂						
	No. Specimens No. Batches Data Class						

(1) Basis values are presented only for A and B data classes.

4.2.6 T-300 3k/934 plain weave fabric

Material Description:

Material: T-300 3k/934

Form: Plain weave fabric, fiber areal weight of 196 g/m², typical cured resin content of 34%, typical cured ply thickness of 0.0078 inches.

Processing: Autoclave cure; 355°F, 85-100 psi for 2 hours.

General Supplier Information:

- Fiber: T-300 fibers are continuous, no twist carbon filaments made from PAN precursor, surface treated to improve handling characteristics and structural properties. Filament count is 3,000 filaments/tow. Typical tensile modulus is 33 x 10⁶. Typical tensile strength is 530,000 psi.
- Matrix: 934 is a high flow, epoxy resin with good hot/wet properties and meets NASA outgassing requirements.

Maximum Short Term Service Temperature: 350°F (dry), 200°F (wet)

Typical applications: Aircraft primary and secondary structure, critical space structure.

4.2.6 T300 3k/934 plain weave fabric*

MATERIAL:	T-300 3k/934 plain weave fabric			C/Ep 194-PW T-300/934 Summary					
FORM:	Fiberite HMF-322/34 plain weave fab								
FIBER:	Toray T-300 3k	MATRIX:	Fiberite 934						
T _g (dry):	410°F T _g (wet):	T _g METHOD:	DSC						
PROCESSING:	Autoclave cure: 355 ± 10°F, 120 - 13	Autoclave cure: 355 ± 10°F, 120 - 130 min., 85-100 psig							

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

Date of fiber manufacture	Date of testing
Date of resin manufacture	Date of data submittal 6/88
Date of form manufacture 2/84	Date of analysis 1/93
Date of composite manufacture	

75°F/A		-65°F/A	250°F/A		160°F/W	250°F/W	
IS-I		IS-I	SS-S		II	II	
II-I		II-I	SS-S		II	II	
II		II	SI		I	I	
II		II	SI		I	I	
S		S	S				
	IS-I II-I II II	IS-I II-I II II	IS-I IS-I II-I II-I II II II II	IS-I IS-I SS-S III-I II-I SS-S III III SI III SI	IS-I IS-I SS-S III-I II-I SS-S III III SI II III SI	IS-IIS-ISS-SIIII-III-ISS-SIIIIIISIIIIIISIIIIIISII	IS-IIS-ISS-SIIIIII-III-ISS-SIIIIIIIISIIIIIIISIIIIIIISIII

LAMINA PROPERTY SUMMARY

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)		1.73 - 1.74	
Resin Density	(g/cm ³)	1.30		
Composite Density	(g/cm ³)	1.55	1.54 - 1.57	
Fiber Areal Weight	(g/m ²)	194	1.92 - 2.00	
Fiber Volume	(%)		58 - 60	
Ply Thickness	(in)		0.0073 - 0.0084	

LAMINATE PROPERTY SUMMARY

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

Volume 2, Chapter 4 Carbon Fiber Composites

DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS * (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERI	AL: T-30	0 3k/934 plain v				Table	Table 4.2.6(a) C/Ep 194-PW		
FIBER V	RESIN CONTENT: 33-35 wt% COMP: DENSITY: 1.54-1.57 g/cm ³ FIBER VOLUME: 58-60 % VOID CONTENT: <0.5-1.2%						T-300/934 Tension, 1-axis [0 _f] ₁₂ 75/A, -65/A, 250/A		
TEST ME	ETHOD:		Screening						
AST	M D 3039-76 (2)	al ultimate load							
NORMALIZED BY: Specimen thickness and batch fiber volume to 57% (0.0077 in. CPT)									
	Content (%)	7 amb			65 bient	25 amb			
Source C	im at T, RH Code	1:	2	1	2	12	>		
		Normalized	Measured	Normalized	Measured	Normalized	Measured		
	Mean Minimum Maximum C.V.(%)	91 82 99 4.1	94 85 100 4.0	83 78 87 3.2	85 79 90 3.3	109 104 114 3.54	113 109 118 3.42		
F ₁ ^{tu}	B-value Distribution	(1) Weibull	(1) Weibull	(1) Weibull	(1) Weibull	(1) Normal	(1) Normal		
(ksi)	C ₁ C ₂	93.0 28.2	96 31	83.7 35.8	86 36	86.0 2.86	113 3.87		
	No. Specimens No. Batches Data Class	20 4 Interim		4	0 4 erim	5 1 Scree			
	Mean	9.1	9.4	10.	10.	9.3	9.7		
E_1^t	Minimum Maximum C.V.(%)	8.4 9.5 3.3	8.7 9.9 3.6	8.6 12 11	9.0 12 10.	9.1 10.0 4.6	9.4 10.7 5.6		
(Msi)	No. Specimens No. Batches Data Class	2 2 Inte	ŀ	20 4 Interim		5 1 Screening			
v_{12}^{t}	Mean No. Specimens No. Batches	Inte			511111	00100	anng		
	Data Class Mean Minimum Maximum C.V.(%)		9780 8880 11200 5.61		8990 7990 9800 6.07		11300 10900 11800 3.11		
$arepsilon_1^{ ext{tu}}$	B-value Distribution		(1) ANOVA		(1) ANOVA		(1) Normal		
(με)	C ₁ C ₂		577 3.12		592 3.61		11300 351		
	No. Specimens No. Batches Data Class	2 2 Inte	ŀ	4	0 4 erim	5 1 Scree			

Basis values are presented only for A and B data classes.
 Width 0.5 inch, speed of testing 0.05 in./in./min, gage length below recommendation

Volume 2, Chapter 4 Carbon Fiber Composites

DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS * (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERI	· · · · · · · · · · · · · · · · · · ·	BOO 3k/934 plain v				Table	4.2.6(b)	
FIBER V	ESIN CONTENT: 33-35 wt% COMP: DENSITY: 1.54-1.57 g/cm ³ BER VOLUME: 58-60 % VOID CONTENT: <0.5-1.2%						C/Ep 194-PW T-300/934 Tension, 1-axis [0 ₇] ₁₂	
TEST METHOD: MODULUS CALCULATION:							, 250/W erim	
	M D 3039-76 (2)				nd 40% of typica			
NORMAL	LIZED BY: Sp	ecimen thickness	and batch fibe	er volume to 57	7%			
Tempera			50		250			
	Content (%) um at T, RH	(1	1)	((1)			
Source C			2		12			
		Normalized	Measured	Normalized	Measured	Normalized	Measured	
	Mean	96	98	79	82			
	Minimum Maximum	84 104	88 106	61 95	66 97			
	C.V.(%)	5.7	5.11	14	11			
	B-value	(2)	(2)	(2)	(2)			
F_1^{tu}	Distribution	(2) ANOVA	(2) Weibull	(2) ANOVA	(2) Weibull			
(ksi)	C ₁	6.0	101	12	86			
. ,	C ₂	4.8	24	5.3	11			
	No. Specimens	1	5		15			
	No. Batches	3	3		3			
	Data Class	Inte		Interim				
	Mean Minimum	9.8 8.1	10.0 8.6	9.4 6.8	9.7 7.1			
	Maximum	11.0	11.7	12.0	13.0			
E_1^t	C.V.(%)	8.7	8.7	17.	18			
(Mai)	No Speciment	1	F		16			
(Msi)	No. Specimens No. Batches		5 3	15 3				
	Data Class	Inte		Int	erim			
	Mean No. Specimens							
v_{12}^{t}	No. Batches							
* 12	Data Class							
	Mean							
	Minimum							
	Maximum C.V.(%)							
_tu	B-value Distribution							
$\varepsilon_1^{\text{tu}}$								
(με)	C1 C2							
	No. Specimens No. Batches							
	Data Class							

Immersed in water at 160°F for 14 days.
 Basis values are presented only for A and B data classes.

(3) Width 0.5 inch, speed of testing 0.05 in./in./min, gage length below recommendation.

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

NTENT: 33-38 UME: 58-60 NESS: 0.007 HOD: D 3039-76	0 %	COMP: DE VOID CON	NSITY: 1.54 TENT: <0.9	4-1.57 g/cm ³ 5-1.2%	C/Ep 1 T-30	4.2.6(c) 194-PW 0/934 n, 2-axis		
D 3039-76			ESIN CONTENT: 33-35 wt% COMP: DENSITY: 1.54-1.57 g/cm ³ BER VOLUME: 58-60 % VOID CONTENT: <0.5-1.2% LY THICKNESS: 0.0074-0.0082 in.					
			75/A, -65/A, 250/AMODULUS CALCULATION:Interim, Screening					
ED BY: Spec		Chord	between 20 an	d 40% of typica	al ultimate load			
	imen thickness	and batch fibe	er volume to 579	% (0.0077 in. C	PT)			
e (°F) ontent (%) at T, RH					amb	ient		
le								
						Measured		
Mean Minimum Maximum C.V.(%)	88 80. 97 5.7	91 82 99 5.5	80. 70. 91 6.2	82 72 95 6.5	94 90. 97 2.6	98 94 101 2.7		
B-value Distribution	(1) ANOVA	(1) ANOVA	(1) ANOVA	(1) ANOVA	(1) Normal	(1) Normal		
C ₁ C ₂	5.4 3.5	5.4 3.4	5.2 3.3	5.7 3.4	93.7 2.47	97.8 2.59		
No. Specimens No. Batches Data Class	20 4 Interim		20 4 Interim		5 1 Screening			
Mean Minimum Maximum C.V.(%)	9.0 8.3 9.9 5.0	9.3 8.7 10.3 4.8	9.1 8.1 10.8 9.3	9.5 8.3 11.1 9.2	8.1 8.0 8.2 1.1	8.5 8.3 8.6 1.5		
No. Specimens No. Batches Data Class	4		20 4 Interim		5 1 Screening			
Mean No. Specimens No. Batches								
Data Class Mean Minimum Maximum C.V.(%)		9630 8680 11100 6.18		9100 7750 10700 7.44		11400 10400 12400 8.59		
B-value Distribution		(1) ANOVA		(1) ANOVA		(1) Normal		
C ₁ C ₂		616 2.82		710 3.08		11400 981		
No. Specimens No. Batches	4		4	ŀ	1			
	e (°F) ontent (%) at T, RH e Mean Minimum Maximum C.V.(%) B-value Distribution C1 C2 No. Specimens No. Batches Data Class Mean Minimum Maximum C.V.(%) No. Specimens No. Batches Data Class Mean No. Specimens No. Batches Data Class Mean No. Specimens No. Batches Data Class Mean No. Specimens No. Batches Data Class Mean No. Specimens No. Batches Data Class Mean Minimum Maximum C.V.(%) B-value Distribution C1 C2 No. Specimens	e (°F)75 ambiant T, RH12Normalized12Mean88Minimum80.Maximum97 C.V.(%)C.V.(%)5.7B-value(1)DistributionANOVAC15.4C23.5No. Specimens20Maximum9.0Minimum8.3Maximum9.0Minimum8.3Maximum9.9C.V.(%)5.0No. Specimens20No. Specimens20No. Specimens20No. Specimens20No. Specimens20No. Specimens20No. Specimens20No. Specimens20No. Specimens20No. Batches4Data Class1nterMean0.0MinimumMaximumC.V.(%)5.0B-value0DistributionC1C220No. Specimens20No. Specimens20 <t< td=""><td>e (°F) intent (%) at T, RH e75 ambientAT, RH e12NormalizedMeasuredMean8891Minimum80.82Maximum9799C.V.(%)5.75.5B-value(1)(1)DistributionANOVAANOVAC15.45.4C23.53.4No. Specimens Data Class20 InterimMean9.09.3Minimum8.38.7Maximum9.910.3C.V.(%)5.04.8No. Specimens No. Batches20 InterimMean9.09.3No. Specimens No. Batches20 InterimNo. Specimens No. Batches20 InterimMean9.910.3C.V.(%)5.04.8Mean9630Minimum Maximum8680Maximum C.V.(%)6.18B-value Distribution(1) ANOVAC1 C2616C22.82No. Specimens No. Batches20 Interim</td><td>e (°F) intent (%) at T, RH e75 ambient-6 ambient$art T, RHe121e121Mean889180.Maimum979991C.V.(%)5.75.56.2B-value(1)(1)(1)DistributionANOVAANOVAC15.45.45.2C23.53.43.3No. Specimens202No. Specimens202Maximum9.910.3O. Specimens202No. Specimens4No. Specimens4No. Specimens4No. Batches4Data Class11100C.V.(%)6.18B-value(1)DistributionANOVAC.V.(%)6.18B-value(1)DistributionANOVAC.V.(%)6.16C22.82No. Specimens20No. Specimens20No. Specimens20No. Specimens20No. Specimens<$</td><td>e (°F) numbert (%) at T, RH75 ambient-665 ambientart, RH1212le1212Mean889180.82Minimum80.8270.72Maximum97999195C.V.(%)5.75.56.26.5B-value(1)(1)(1)(1)DistributionANOVAANOVAANOVAANOVAC15.45.45.25.7C23.53.43.33.4No. Specimens20204No. Specimens202020No. Specimens2020No. Specimens2020No. Specimens2020No. Specimens2020No. Specimens2020No. Specimens2020No. Specimens2020No. Specimens44Data ClassInterimMinimum86807750Maximum96309100Minimum86807750Maximum1110010700C.V.(%)6.187.44B-value(1)(1)MinimumANOVAANOVAC1616710C22.823.08No. Specimens2020No. Specimens2020No. Specimens2020No. Specimens20No. Specimens<</td><td>e (°F) 75 -65 25 ambient ambient ambient ambient ambient ambient e 12 12 12 12 Normalized Measured Normalized Measured Normalized Measured Normalized Mean 88 91 80. 82 94 94 Maximum 97 99 91 95 97 5.7 5.5 6.2 6.5 2.6 B-value (1) (1) (1) (1) (1) (1) Normalized C1 5.4 5.4 5.2 5.7 93.7 5.2 5.7 93.7 C2 3.5 3.4 3.3 3.4 2.47 Normalized Mormalized Mormalized Mormalized Mormalized Mormalized 1.1 1.1 2.4 2.47 So So</td></t<>	e (°F) intent (%) at T, RH e75 ambient AT, RH e12NormalizedMeasuredMean8891Minimum80.82Maximum9799C.V.(%)5.75.5B-value(1)(1)DistributionANOVAANOVAC15.45.4C23.53.4No. Specimens Data Class20 InterimMean9.09.3Minimum8.38.7Maximum9.910.3C.V.(%)5.04.8No. Specimens No. Batches20 InterimMean9.09.3No. Specimens No. Batches20 InterimNo. Specimens No. Batches20 InterimMean9.910.3C.V.(%)5.04.8Mean9630Minimum Maximum8680Maximum C.V.(%)6.18B-value Distribution(1) ANOVAC1 C2616C22.82No. Specimens No. Batches20 Interim	e (°F) intent (%) at T, RH e75 ambient-6 ambient $art T, RHe121e121Mean889180.Maimum979991C.V.(%)5.75.56.2B-value(1)(1)(1)DistributionANOVAANOVAC15.45.45.2C23.53.43.3No. Specimens202No. Specimens202Maximum9.910.3O. Specimens202No. Specimens4No. Specimens4No. Specimens4No. Batches4Data Class11100C.V.(%)6.18B-value(1)DistributionANOVAC.V.(%)6.18B-value(1)DistributionANOVAC.V.(%)6.16C22.82No. Specimens20No. Specimens20No. Specimens20No. Specimens20No. Specimens<$	e (°F) numbert (%) at T, RH75 ambient-665 ambient art, RH 1212le1212Mean889180.82Minimum80.8270.72Maximum97999195C.V.(%)5.75.56.26.5B-value(1)(1)(1)(1)DistributionANOVAANOVAANOVAANOVAC15.45.45.25.7C23.53.43.33.4No. Specimens20204No. Specimens202020No. Specimens2020No. Specimens2020No. Specimens2020No. Specimens2020No. Specimens2020No. Specimens2020No. Specimens2020No. Specimens44Data ClassInterimMinimum86807750Maximum96309100Minimum86807750Maximum1110010700C.V.(%)6.187.44B-value(1)(1)MinimumANOVAANOVAC1616710C22.823.08No. Specimens2020No. Specimens2020No. Specimens2020No. Specimens20No. Specimens<	e (°F) 75 -65 25 ambient ambient ambient ambient ambient ambient e 12 12 12 12 Normalized Measured Normalized Measured Normalized Measured Normalized Mean 88 91 80. 82 94 94 Maximum 97 99 91 95 97 5.7 5.5 6.2 6.5 2.6 B-value (1) (1) (1) (1) (1) (1) Normalized C1 5.4 5.4 5.2 5.7 93.7 5.2 5.7 93.7 C2 3.5 3.4 3.3 3.4 2.47 Normalized Mormalized Mormalized Mormalized Mormalized Mormalized 1.1 1.1 2.4 2.47 So So		

(1) Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS * (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERI	NE 1989). ALL DOO AL: T-30	0 3k/934 plain v				Table	4.2.6(d)	
FIBER V	RESIN CONTENT: 33-35 wt% COMP: DENSITY: 1.54-1.57 g/cm ³ IBER VOLUME: 58-60 % VOID CONTENT: <0.5-1.2%					T-30 Tensio [9	C/Ep 194-PW T-300/934 Tension, 2-axis [90 _f] ₁₂ 160/W, 250/W	
TEST ME	ETHOD:		MODULUS	MODULUS CALCULATION: Interi				
AST	M D 3039-76		Chord	between 20 a	nd 40% of typica	l ultimate load		
NORMAL	LIZED BY: Spe	cimen thickness	and batch fibe	er volume to 57	7% (0.0077 in. Cl	PT)		
Equilibriu	Content (%) um at T, RH	16 (1)		250 (1)			
Source C	Code	1.			12 Management	N	Mara a una d	
	Mean	Normalized 97	Measured 100	Normalized 81	Measured 83	Normalized	Measured	
	Minimum Maximum C.V.(%)	90. 111 6.8	92 113 6.3	73 89 5.1	75 91 4.8			
F_2^{tu}	B-value Distribution	(2) ANOVA	(2) ANOVA	(2) ANOVA	(2) ANOVA			
(ksi)	C ₁ C ₂	7.3 4.8	6.8 4.5	4.4 4.5	4.2 4.2			
	No. Specimens No. Batches Data Class	1 3 Inte	3	15 3 Interim				
E_2^t	Mean Minimum Maximum C.V.(%)	10. 8.0 11.8 11	10. 8.2 12.1 11	9.9 8.2 11.9 11	10. 8.5 12.1 11			
(Msi)	No. Specimens No. Batches Data Class	1 3 Inte	3	15 3 Interim				
v_{21}^{t}	Mean No. Specimens No. Batches							
	Data Class Mean Minimum Maximum C.V.(%)							
$arepsilon_2^{ ext{tu}}$	B-value Distribution							
(με)	C ₁ C ₂							
	No. Specimens No. Batches Data Class							

Immersed in water at 160°F for 14 days.
 Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERIA		0 3k/934 plain v		AS NOT SUPPL		Table 4.2.6(e)		
RESIN CC FIBER VO PLY THIC	DNTENT: 33-3 DLUME: 58-6	35 wt% COMP: DENSITY: 1.54-1.57 g/cn 60 % VOID CONTENT: <0.5-1.2%				C/Ep 1 T-30 Compress	94-PW 0/934 sion, 1-axis	
		174-0.0002 III.	'4-0.0082 in.				[0 _f] ₁₂ 75/A, -65/A, 250/A	
TEST MET				S CALCULATIO			Screening	
SACI	MA SRM 1-88		Chord	between 20 an	d 40% of typica	I ultimate load		
NORMALI	ZED BY: Spe	cimen thickness	and batch fibe	er volume to 579	% (0.0077 in. Cl	PT)		
Temperatu Majatura C	ure (°F) Content (%)	7 amb		-6 amb		25 amb		
Equilibriun		amp	nem	and	nent	amp	ient	
Source Co		1		1		1:		
		Normalized	Measured	Normalized	Measured	Normalized	Measured	
	Mean Minimum	95 83	98 87	104 87	108 90.	100. 94	105 98	
	Maximum	120	125	133	139	107	111	
	C.V.(%)	10.	10.	13	14	5.6	5.1	
	B-value	(1)	(1)	(1)	(1)	(1)	(1)	
F_1^{cu}	Distribution	ANOVA	ANOVA	ANOVA	ANOVA	Normal	Normal	
(ksi)	C1 C2	10. 3.9	11 3.9	15 3.7	16 3.8	100. 5.64	105 5.4	
		5.5	0.0	0.7	5.0	5.04	5.4	
	No. Specimens No. Batches	2		2		5		
	Data Class	Interim		Interim		Scree	ening	
	Mean	8.4	8.8	8.2	8.6	8.4	8.9	
	Minimum	7.7	8.0	7.4	7.8	7.9	8.1	
ъc	Maximum C.V.(%)	9.0 5.1	9.4 5.3	8.9 5.1	9.7 5.7	10.0 6.3	10.1 6.4	
E_1^c	0.1.(70)	0.1	0.0	0.1	0.7	0.0	0.4	
(Msi)	No. Specimens	2		2		19		
	No. Batches Data Class	4 Interim		Inte	1 erim	4 Interim		
	Mean							
v_{12}^{c}	No. Specimens No. Batches							
V ₁₂	Data Class							
	Mean							
	Minimum							
	Maximum C.V.(%)							
	B-value							
$\varepsilon_1^{ m cu}$	Distribution							
(με)	C ₁							
(pic)	C ₂							
	No. Specimens							
	No. Batches Data Class							

(1) Basis values are presented only for A and B data classes.

(2) Tab thickness of 0.112 - 0.120 inch is larger than 0.070 inch nominal thickness per method.

(3) Specimen thickness of 0.09 - 0.10 inch is less than nominal 0.12 inch thickness per method.

Volume 2, Chapter 4 Carbon Fiber Composites

DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL. *

	(JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUF MATERIAL: T-300 3k/934 plain weave fabric						4.2.6(f)		
RESIN CO FIBER VO PLY THIC	ONTENT: 33 DLUME: 58	3-35 wt% 3-60 % 0074-0.0082 in.	60 % VOID CONTENT: <0.5-1.2%			C/Ep 1 T-30 Compress	94-PW 0/934 sion, 1-axis		
	KNE55: 0.	0074-0.0082 In.				[0 _f] ₁₂ 160/W, 250/W			
TEST ME				S CALCULATIC			Interim		
SACI	MA SRM 1-88		Chord	between 20 an	nd 40% of typica	l ultimate load			
NORMAL	IZED BY: Sp	pecimen thickness	and batch fibe	er volume to 57°	% (0.0077 in. Cl	PT)			
	ure (°F) Content (%) m at T, RH	16 (1			50 1)				
Source Co	ode	12			2				
	Maan	Normalized	Measured	Normalized 44	Measured	Normalized	Measured		
	Mean Minimum	74 67	76 68	44 40	46 41				
	Maximum	81	84	49	51				
	C.V.(%)	6.9	5.6	6.2	6.2				
F ₁ ^{cu} (3)	B-value Distribution	(2) ANOVA	(2) ANOVA	(2) Weibull	(2) Weibull				
(ksi)	C ₁ C ₂	5.6 4.9	6.2 5.0	45.4 17.4	46.8 16.9				
	No. Specimens No. Batches	3	15 3		5 3				
	Data Class	Inter	rim	Interim					
E_1^c	Mean Minimum Maximum C.V.(%)								
(Msi)	No. Specimen:	s							
	No. Batches Data Class								
v_{12}^{c}	Mean No. Specimens No. Batches	S							
	Data Class								
	Mean Minimum Maximum C.V.(%)								
$\varepsilon_1^{ m cu}$	B-value Distribution								
(με)	C ₁ C ₂								
	No. Specimens No. Batches Data Class	s							

Immersed in water at 160°F for 14 days.
 Basis values are presented only for A and B data classes.

(3) Tab thickness of 0.112 - 0.120 inch is larger than 0.070 inch nominal thickness per method.

Volume 2, Chapter 4 Carbon Fiber Composites

DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS * (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERIA	<u>E 1989). ALL DOC</u> \L: T-30	0 3k/934 plain				Table	4.2.6(g)		
RESIN CO FIBER VO PLY THIC	DLUME: 58-6	35 wt% COMP: DENSITY: 1.54-1.57 g/cm ³ 60 % VOID CONTENT: <0.5-1.2%			T-30 Compress [90	C/Ep 194-PW T-300/934 Compression, 2-axis [90 _f] ₁₂ 75/A, -65/A, 250/A			
TEST ME				S CALCULATIO		Interim, S	Interim, Screening		
	MA SRM 1-88			between 20 and					
NORMAL Temperat			s and batch fibe	er volume to 57%		PT) 25	0		
Moisture	Content (%) m at T, RH		bient	amb		amb			
Source C	ode		2	1:		1:			
	Maara	Normalized	Measured	Normalized	Measured	Normalized	Measured		
	Mean Minimum Maximum C.V.(%)	90. 81 100. 5.9	93 85 104 6.0	103 94 116 6.2	106 98 121 6.1	82 77 84 3.4	85 81 88 3.4		
F ₂ ^{cu} (2)	B-value Distribution	(4) ANOVA	(4) ANOVA	(1) Normal	(1) Normal	(1) Normal	(1) Normal		
(ksi)	C ₁ C ₂	5.6 3.2	5.9 3.2	103 6.18	106 6.4	81.7 2.74	85.3 2.86		
	No. Specimens No. Batches Data Class	20 4 Interim		4	20 4 Interim		boing		
	Mean	8.3	8.6	8.4	8.8	Scree 8.8	9.0		
E ^c ₂ (3)	Minimum Maximum C.V.(%)	7.4 9.3 7.0	7.7 9.5 6.6	7.5 9.0 5.1	7.7 9.4 5.5	7.9 10.2 8.4	8.1 10.6 8.9		
(Msi)	No. Specimens No. Batches Data Class	4	0 4 erim	20 4 Interim		20 4 Interim			
v_{21}^{c}	Mean No. Specimens No. Batches								
	Data Class Mean Minimum Maximum C.V.(%)								
ε ^{cu} (με)	B-value Distribution C ₁ C ₂								
	No. Specimens No. Batches Data Class								

(1) Basis values are presented only for A and B data classes.

(2) Tab thickness of 0.112-0.120 inch is larger than 0.070 inch nominal thickness per method.

(3) Specimen thickness of 0.09-0.10 inch is less than nominal 0.120 inch thickness per method.
 (4) B-basis values calculated from less than five batches of data using the ANOVA method are not presented.

Volume 2, Chapter 4 Carbon Fiber Composites

DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL. *

MATERIA		AS NOT SUFFI	LIED FOR THIS MATERIAL. Table 4.2.6(h)				
RESIN CO FIBER VO PLY THIC	ONTENT:	33-3 58-6	0 3k/934 plain v 5 wt% 0 % 74-0.0082 in.	COMP: DE VOID CON		4-1.57 g/cm ³ 5-1.2%	C/Ep 194-PW T-300/934 Compression, 2-axis [90 _f] ₁₂
TEST METHOD: MODULUS CALCULATION						-IAC	160/W, 250/W Interim
	MA SRM 1-88						
SAC	IVIA SRIVI 1-00			Chora	between 20 ar	nd 40% of typica	
NORMAL		Spec				% (0.0077 in. C	PT)
Temperat Moisture	ure (°⊦) Content (%)		16 we			50 /et	
	m at T, RH		(1			1)	
Source C			1:			2	
			Normalized	Measured	Normalized	Measured	Normalized Measured
	Mean		75	77	46	47	
	Minimum Maximum		63 81	66 83	38 59	39 60	
	C.V.(%)		7.2	6.5	11	11	
F ₂ ^{cu} (3)	B-value Distribution		(2) ANOVA	(2) ANOVA	(2) ANOVA	(2) ANOVA	
(ksi)	C ₁		6.0	5.4	5.9	5.8	
()	C ₂		5.0	4.7	5.1	5.0	
	No. Specime	ens	15 3 Interim			15	
	No. Batches Data Class					3 erim	
	Mean		Inte			51111	
	Minimum						
	Maximum						
E ₂ ^c	C.V.(%)						
(Msi)	No. Specime No. Batches	ens					
	Data Class						
v_{21}^{c}	Mean No. Specime No. Batches	ens					
· 21	Data Class						
	Mean Minimum						
	Maximum C.V.(%)						
$\varepsilon_2^{ m cu}$	B-value Distribution						
	C ₁						
(με)	C_1 C_2						
	No. Specime No. Batches Data Class	ens					
	Data Class						

Immersed in water at 160°F for 14 days.
 Basis values are presented only for A and B data classes.

(3) Tab thickness of 0.112-0.120 inch is larger than 0.070 nominal thickness per method.

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERIA	L:	T-300 3k	/934 plain weav	e fabric		Table 4.2.6(i) C/Ep 194-PW
RESIN CO FIBER VO PLY THIC	DLUME:	33-35 wt ^ı 58-60 % 0.0074-0		COMP: DENSITY: VOID CONTENT:	T-300/934 SBS, 31-plane [0 _f] ₁₂	
TEST ME	THOD:			MODULUS CALCI	JLATION:	75/A, -65/A, 250/A Screening
	N D-2344-6	8 (1)			20 and 40% of typi	
NORMALI		Not norm	alized			
Temperati	ure (°F)		75	-65	250	
Moisture C	Content (%) n at T, RH		ambient	ambient	ambient	
Source Co			12	12	12	
	Mean		12.0	11.9	9.2	
	Minimum		10.5	10.0	9.1	
	Maximun	n	13.4	13.9	9.5	
	C.V.(%)		6.89	8.38	2.1	
	B-value		(2)	(2)	(2)	
F ₃₁ ^{sbs}	Distributi	on	ANOVA	ANOVA	Normal	
(ksi)	C ₁		1.07	0.901	9.2	
(1(0))	C_2		3.41	3.71	0.20	
	No. Spec		20	20	5	
	No. Batc Data Cla		4 Sereening	4 Sereening	1 Sereening	
	Dala Cia	55	Screening	Screening	Screening	

(1) Length-to-thickness ratio is approximately 11.

(2) Short beam strength test data are approved for Screening Data Class only.

4.2.7 Celion 12k/938 unidirectional tape

Material Description:

Material: Celion-12k/938

- Form: Unidirectional tape, fiber areal weight of 145 g/m², typical cured resin content of 28-40%, typical cured ply thickness of 0.0040-0.0073 inches.
- Processing: Autoclave cure; 355°F, 85-100 psi for 2 hours.

General Supplier Information:

Fiber: Celion fibers are continuous carbon filaments made from PAN precursor. Filament count is 12,000 filaments/tow. Typical tensile modulus is 34 x 10⁶ psi. Typical tensile strength is 515,000 psi.

Matrix: 938 is an epoxy resin. 10 days out-time at 72°F.

Maximum Short Term Service Temperature: 350°F (dry), 200°F (wet)

Typical applications: Commercial and military structural applications.

4.2.7 Celion 12k/938 unidirectional tape*

MATERIAL:	Celion 12k/938 unidirectional tape			C/Ep 145-UT Celion 938 Summary
FORM:	Fiberite Hy-E 1638N unidirectional tap	e prepreg		
FIBER:	Celanese Celion 12k, EP06, no twist	MATRIX:	Fiberite 938	
T _g (dry):	T _g (wet):	T _g METHOD:		
PROCESSING:	Autoclave cure: 355 ± 10°F, 120 - 130	min., 85 - 100 psig		

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

Date of fiber manufacture 5/85	Date of testing	7/85
Date of resin manufacture	Date of data submittal	6/88
Date of form manufacture	Date of analysis	1/93
Date of composite manufacture		

75°F/A		-67°F/A	250°F/A		180°F/W		
IIII		SSSS	IISI		IISI		
II-I		II-I	SS-S		II-I		
II		II	II		II		
II		II	SI		I		
I		S	S		I		
I							
	IIII II-I II II	IIII II-I II II	IIII SSSS II-I II-I II II II II II S	IIIISSSSIISIII-ISSSSIISIIIIIIISS-SIIIIIIIISISISS	IIIISSSSIISIII-III-ISS-SIIIIIIIIIISIISS	IIIISSSSIISIIISIII-III-ISS-SII-IIIIIIIIIIIIISIIISSI	IIIISSSSIISIIISIII-III-ISS-SII-IIIIIIIIIIIIISIIISSI

LAMINA PROPERTY SUMMARY

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.78		
Resin Density	(g/cm ³)	1.30		
Composite Density	(g/cm ³)		1.54 - 1.61	
Fiber Areal Weight	(g/m ²)	145	144 - 147	
Fiber Volume	(%)		52 - 65	
Ply Thickness	(in)		0.0040 - 0.0073	

LAMINATE PROPERTY SUMMARY

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

Volume 2, Chapter 4 Carbon Fiber Composites

DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL. *

MATERIA	IE 1989). ALL DOC AL: Celic	on 12k/938 unidi		REQUIRED WA	AS NOT SUPP	Table	4.2.7(a)				
RESIN C FIBER VO PLY THIO TEST ME	OLUME: 56-6 CKNESS: 0.00	6 wt% 5 % 40-0.0063 in.	COMP: DE VOID CON	NSITY: 1.55 ITENT: <1.1		C/Ep 145-UT Celion 12k/938 Tension, 1-axis [0] ₇ 75/A, -67/A, 250/A Interim, Screening					
	M D 3039-76			it at 25% of typic			Screening				
	NORMALIZED BY: Fiber volume to 60% (0.0053 in. CPT)										
Equilibriu	Content (%) m at T, RH	7t amb		-6 amb		25 amb	ient				
Source C	ode	12		12		1:					
	Maan	Normalized	Measured	Normalized	Measured	Normalized	Measured				
	Mean Minimum Maximum C.V.(%)	273 223 324 7.56	271 207 319 9.76	262 235 290 7.67	278 254 303 6.25	309 295 328 3.00	319 306 337 2.82				
F ₁ ^{tu}	B-value Distribution	(1) ANOVA	(1) ANOVA	(1) ANOVA	(1) ANOVA	(1) Weibull	(1) Weibull				
(ksi)	C ₁ C ₂	21.0 2.42	29.3 4.36	25.1 18.0	20.9 16.2	314 34.5	323 36.1				
	No. Specimens No. Batches Data Class	102 3 Interim		10 2 Scree	ening	1) 3 Inte	s rim				
E_1^t	Mean Minimum Maximum C.V.(%)	19.7 16.9 23.1 5.22	19.5 16.5 21.8 5.59	19.0 17.3 20.3 4.94	20.2 18.1 22.0 5.94	20.1 16.9 23.4 9.12	20.7 17.9 23.4 7.49				
(Msi)	No. Specimens No. Batches Data Class	10 3 Inte		10 2 Screening		1: 3 Inte	3				
$v_{12}^{ m t}$ (2)	Mean No. Specimens No. Batches	10 3		1(2		11					
	Data Class Mean Minimum Maximum C.V.(%)	Inte	rim 13100 10600 14800 6.95	Scree	ening 12800 11500 14000 6.72	Inte	rim 14800 12900 16100 5.81				
$arepsilon_1^{ ext{tu}}$	B-value Distribution		(1) ANOVA		(1) ANOVA		(1) Weibull				
(με)	C ₁ C ₂		946 3.14		1060 17.2		15100 21.4				
	No. Specimens No. Batches Data Class	102 3 Interim		10 2 Screening		15 3 Interim					

Basis values are presented only for A and B data classes.
 Poisson's ratio measured at 25% of typical ultimate load.

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERIA		DCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIA elion 12k/938 unidirectional tape Table 4.2.7(b) C/Ep 145-UT							
RESIN CO FIBER VO PLY THIO	OLUME: 56-	36 wt% 64 % 044-0.0063 in.	COMP: DE VOID CON		1.55 <1.4	-1.59 g/cm ³ %	Celion 938 Tension, 1-axis [0] ₇ 180/W		
TEST ME	THOD:		MODULUS	S CALCUL		N:		Screening	
AST	M D 3039-76		Secan	it at 25% o	f typic	al ultimate loa	ad		
		er volume to 60%	6 (0.0053 in. C	PT)					
	Content (%) m at T, RH	18 1. (1	.1 I)						
		Normalized	Measured	Normaliz	zed	Measured	Normalized	Measured	
	Mean Minimum Maximum C.V.(%)	277 236 307 8.89	282 219 328 14.3						
F_1^{tu}	B-value Distribution	(3) ANOVA	(3) ANOVA						
(ksi)	C ₁ C ₂	27.7 5.36	46.7 5.89						
	No. Specimens No. Batches Data Class	3	15 3 Interim						
E_1^t	Mean Minimum Maximum C.V.(%)	18.9 17.7 20.5 4.81	19.2 16.4 21.9 9.74						
(Msi)	No. Specimens No. Batches Data Class	1 3 Inte	3						
v ₁₂ ^t (2)	Mean No. Specimens No. Batches	1	0.345 4 3						
	Data Class Mean Minimum Maximum C.V.(%)	Scree	ening 14000 11800 15700 8.13						
$arepsilon_1^{ ext{tu}}$	B-value Distribution		(3) ANOVA						
(με)	C ₁ C ₂		1180 3.36						
	No. Specimens No. Batches Data Class	Inte	3 erim						

(1) Conditioned at 160°F, 88% RH until weight gain was between 1.0 and 1.2%.

(2) Poisson's ratio measured at 25% of typical ultimate load.

(3) Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS * (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

		AS NOT SUPPL		AL.			
MATERI	AL: Celi	on 12k/938 unid	irectional tape			Table 4.2.7(c)	
	CONTENT: 32-3	87 wt%	COMP: D		5-1.58 g/cm ³	C/Ep 145-UT Celion 938	
FIBER V			VOID CO		3%	Tension, 2-axis	
		53-0.0064 in.		NIENI. <i.< td=""><td>5 /0</td><td>[90]₂₀</td><td></td></i.<>	5 /0	[90] ₂₀	
	UNNESS. 0.00	55-0.000 4 III.				75/A, -67/A, 250/A,	
						180/W	,
TEST M	ETHOD:		MODULU	S CALCULATIO	ON:	Interim, Screening	1
	TM D 3039-76				cal ultimate load		,
7.01			Coodin				
NORMA	LIZED BY: Not	normalized					
Tempera	ature (°F)	75	-67	250	180		
	Content (%)	ambient	ambient	ambient	1.1		
	um at T, RH			Gindlerit	(1)		
Source C		12	12	12	12		
	Mean	9.6	9.5	8.8	5.8		
	Minimum	7.5	8.5	7.1	5.0		
	Maximum	13.9	10.4	10.7	6.6		
	C.V.(%)	13	6.6	11	8.4		
	· · /						
	B-value	(2)	(2)	(2)	(2)		
F_2^{tu}	Distribution	ANOVA	Weibull	Weibull	ANOVA		
(ksi)	C ₁	1.3	9.8	9.2	0.54		
(10)	C_2	2.7	18	10	5.1		
	02	2.1	10	10	5.1		
	No. Specimens	101	15	10	15		
	No. Batches	3	3	2	3		
	Data Class	Interim	Interim	Screening	Interim		
	Mean	1.35	1.35	1.22	1.19		
	Minimum	1.14	1.25	0.94	1.03		
	Maximum	1.82	1.51	1.52	1.36		
E_2^t	C.V.(%)	9.29	4.96	12.5	8.65		
L 2							
(Msi)	No. Specimens	101	15	10	15		
(10151)	No. Batches	3	3	2	3		
	Data Class	Interim	Interim	Screening	Interim		
	Mean			Corconing			
	No. Specimens						
v_{21}^{t}	No. Batches						
v 21	Data Class						
	Mean	7200	6700	7600	4900		
	Minimum	1300	5500	6900	4900		
	Maximum	9500	7900	9300	5800		
	C.V.(%)	15	9.2	9.5	8.6		
			0.2	0.0	0.0		
	B-value	(2)	(2)	(2)	(2)		
$\varepsilon_2^{ m tu}$	Distribution	Nonpara.	Weibull	Normal	Weibull		
		-					
(με)	C ₁	5	7000	7600	5100		
	C ₂		12	720	12		
		07	4 -	40	45		
	No. Specimens	97	15	10	15		
	No. Batches	3	3 Instanting	2	3		
	Data Class	Interim	Interim	Screening	Interim		

Conditioned at 160°F, 88% RH until weight gain was between 1.0 and 1.2%.
 Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

(JUN	NE 1989). ALL DOC	JUMENTATION	PRESENTLY	REQUIRED WA	AS NOT SUPP	LIED FOR THIS	SMATERIAL.	
MATERI	AL: Celio	on 12k/938 unidi	rectional tape				4.2.7(d)	
FIBER V	OLUME: 57-6		Comp: De Void Con	ENSITY: 1.56 ITENT: <1.5	6-1.61 g/cm ³ 5%	Celic Compress	145-UT on 938 sion, 1-axis	
PLY THI	CKNESS: 0.00	46-0.0073 in.)] ₇	
TEST ME	ETHOD:		MODULUS	S CALCULATIO	N:		7/A, 250/A erim	
	MA SRM 1-88			modulus betwe				
NORMALIZED BY: Fiber volume to 60% (0.0053 in. CPT)								
Tempera		75		-6		25		
	Content (%) Im at T, RH	ambi	ient	amb	ient	amb	ient	
Source C		12	2	12	2	1:	2	
		Normalized	Measured	Normalized	Measured	Normalized	Measured	
	Mean	201	198	240	240	195	201	
	Minimum	166 255	172 246	204 286	216	180 214	179 229	
	Maximum C.V.(%)	9.88	246 8.99	11.3	276 8.25	5.48	7.26	
	0.1.(70)	0.00	0.00	11.0	0.20	0.10	1.20	
F ₁ ^{cu}	B-value Distribution	(1) ANOVA	(1) ANOVA	(1) ANOVA	(1) ANOVA	(1) ANOVA	(1) ANOVA	
(ksi)	C ₁	21.4	18.7	31.1	21.9	11.9	16.7	
	C ₂	3.93	3.35	5.59	4.97	5.07	5.59	
	No. Specimens	10	2	15	5	1	5	
	No. Batches		3 3 3					
	Data Class	Inter		Inte		Inte		
	Mean Minimum	17.2 14.7	18.2 15.0	18.8 16.6	19.1 16.6	18.1 17.1	18.1 16.3	
	Maximum	21.0	21.5	21.7	22.5	19.1	20.3	
E_1^c	C.V.(%)	6.87	7.64	7.14	9.74	3.73	7.07	
(Msi)	No. Specimens	97	7	15	5	1	5	
(-)	No. Batches	3		3		3		
	Data Class	Inter	rim	Inte	rim	Inte	rim	
v_{12}^{c}	Mean No. Specimens No. Batches							
	Data Class							
	Mean Minimum Maximum C.V.(%)							
_011	B-value Distribution							
ε_1^{cu}								
(με)	C ₁ C ₂							
	No. Specimens No. Batches Data Class							

(1) Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERIA		ion 12k/938 unio			D WAS NOT SUF	Table	4.2.7(e)
RESIN C FIBER VO PLY THIO	OLUME: 58-	34 wt% 65 % 044-0.0073 in.	Comp: De Void Con	Celic Compress [145-UT on 938 sion, 1-axis 0] ₇		
TEST ME	THOD	ATION:		0/W erim			
	MA SRM 1-88				between 20% and		
NORMAL	IZED BY: Fib	er volume to 60%					
Temperat	ture (°F)	1	80				
	Content (%) m at T, RH		.1 1)				
Source C			2				
		Normalized	Measured	Normali	zed Measured	Normalized	Measured
	Mean Minimum	185 157	188 160				
	Maximum	206	217				
	C.V.(%)	7.40	7.55				
rr cu	B-value Distribution	(2) Weibull	(2) Weibull				
F ₁ ^{cu} (ksi)	C ₁	191	194				
(10)	C_2	16.3	14.4				
	No. Specimens		5				
	No. Batches		3				
	Data Class Mean	18.2	erim 19.2				
	Minimum	15.7	15.8				
	Maximum	22.3	23.7				
E ₁ ^c	C.V.(%)	8.88	10.5				
(Msi)	No. Specimens No. Batches		5 3				
	Data Class		erim				
	Mean No. Specimens						
v_{12}^{c}	No. Batches						
	Data Class Mean						
	Minimum						
	Maximum						
	C.V.(%)						
$arepsilon_1^{ m cu}$	B-value Distribution						
	C ₁						
(με)	C_2						
	No. Specimens No. Batches						
	Data Class						

(1) Conditioned at 160°F, 88% RH until weight gain was between 1.0 and 1.2%.

(2) Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS * (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERIA			k/938 unidirecti	onal tape		Та	ble 4.2.7(f)		
RESIN CC FIBER VO PLY THICI	LUME:	1.57-1.61 g/cm <1.4%	n ³ C She	Ep 145-UT elion 938 ar, 12-plane [±45] ₂₅ -65/A, 250/A,					
TEST MET	THOD:			MODULUS CALCU	JLATION:	Interi	180/W m, Screening		
	/I D 3518-76						, <u> </u>		
NORMALI	NORMALIZED BY: Not normalized								
Temperatu	ure (°F)		75	-67	250	180			
	Content (%)		ambient	ambient	ambient	1.1			
Equilibrium						(1)			
Source Co			12	12	12	12			
	Mean		14	16	14	14			
	Minimum		11 16	14	13 15	13 14			
	Maximum C.V.(%)		7.3	18 10.	6.1	14 3.6			
	0. v.(/0)		1.5	10.	0.1	5.0			
	B-value		(2)	(2)	(2)	(2)			
F ₁₂ ^{su}	Distribution		ANOVA	ANOVA	Weibull	ANOVA			
(ksi)	C ₁		1.1	1.8	14	0.53			
(KSI)	C_1 C_2		4.4	5.8	19	4.6			
	02			0.0	10	4.0			
	No. Specim	iens	102	14	14	15			
	No. Batche		3	3	3	3			
	Data Class		Interim	Screening	Screening	Interim			
	Mean								
	Minimum								
	Maximum								
G ^s ₁₂	C.V.(%)								
(Msi)	No. Specim								
	No. Batche	s							
	Data Class						ļ		
	Mean								
	Minimum Maximum								
	C.V.(%)								
	0(70)								
	B-value								
$\gamma_{12}^{\rm su}$	Distribution								
(με)	C ₁								
(με)	C_2								
	-2								
	No. Specim	iens							
	No. Batche								
	Data Class								

Conditioned at 160°F, 88% RH until weight gain was between 1.0 and 1.2%.
 Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERIA			k/938 unidirect			•	Table 4.2.7(g)
RESIN CC FIBER VO PLY THIC	DLUME:	31-40 wt 52-62 % 0.0051-0		COMP: DENSITY: VOID CONTENT:	1.54-1.59 g/cm <1.0%	3	C/Ep 145-UT Celion 938 SBS, 31-plane [0] ₁₄ 75/A
TEST ME				MODULUS CALCU	JLATION:		Screening
ASTM	/I D 2344-67	7					
NORMALI	ZED BY:	Not norm	alized				
Temperatu			75				
	Content (%)		ambient				
Equilibriun Source Co			12				
	Mean		18.3				
	Minimum		16.6				
	Maximum	า	19.7				
	C.V.(%)		3.29				
	B-value		(1)				
F ₃₁ ^{sbs}	Distributio	on	ANOVA				
(ksi)	C ₁		0.619				
()	C ₂		2.76				
	No. Spec	imens	102				
	No. Batch	nes	3				
	Data Clas	SS	Screening				

(1) Short beam strength test data are approved for Screening Data Class only.

4.2.8 AS4 12k/3502 unidirectional tape

Material Description:

Material: AS4-12k/3502

- Form: Unidirectional tape, fiber areal weight of 150 g/m², typical cured resin content of 32-45%, typical cured ply thickness of 0.0052 inches.
- Processing: Autoclave cure; 275° F, 85 psi for 45 minutes; 350°F, 85 psi, hold for 2 hours. Post cure at 400°F to develop optimum 350°F properties.

General Supplier Information:

Fiber: AS4 fibers are continuous high strength, high strain, standard, modulus carbon filaments made from PAN precursor. The fibers are surface treated to improve handling character-istics and structural properties, offering good drape. Filament count is 12,000 filaments/tow. Typical tensile modulus is 34 x 10⁶psi. Typical tensile strength is 550,000 psi.

Matrix: 3502 is an epoxy resin. Good tack; up to 10 days out-time at ambient temperature.

Maximum Short Term Service Temperature: 350°F (dry), 180°F (wet)

Typical applications: Primary and secondary structural applications on commercial and military aircraft.

Data Analysis Summary

1. Where noted, only normalized data were made available for analysis.

4.2.8 AS4 12k/3502 unidirectional tape*

MATERIAL:	AS4 12k/3502 unidirectional tape		C/Ep 147-UT AS4/3502 Summary
FORM:	Hercules AS4/3502 unidirectional tape prepreg	-	
FIBER:	Hercules AS4 12k, surface-treated, MATRIX: no twist	Hercules 3502	
T _g (dry):	407°F T _g (wet): T _g METHOD:	ТМА	
PROCESSING:	Autoclave cure: 280 ± 5°F, 90 min, 85+15-0 psi; 350°F, 12	0 min.	

* Additional data set found on p. 73.

Date of fiber manufacture	4/83 - 6/83	Date of testing	11/83 - 7/84
Date of resin manufacture	6/83	Date of data submittal	12/93, 5/94
Date of form manufacture	6/83 - 7/83	Date of analysis	8/94
Date of composite manufacture	8/83 - 5/84		

LAMINA PROPERTY SUMMARY

75°F/A -65°F/A 180°F/W	250°F/W
Tension, 1-axis BM BM BM	BM
Tension, 2-axis BM BM BM	BM
Tension, 3-axis	
Compression, 1-axis BM II BM	BM
Compression, 2-axis BM II BM	BM
Compression, 3-axis	
Shear, 12-plane BM BM	II
Shear, 23-plane	
Shear, 31-plane	

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

Volume 2, Chapter 4 Carbon Fiber Composites

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.79	1.77 - 1.80	
Resin Density	(g/cm ³)	1.26	1.24 - 1.29	
Composite Density	(g/cm ³)	1.57	1.56 - 1.59	
Fiber Areal Weight	(g/m ²)	147	146 - 150	
Fiber Volume	(%)	58	55 - 60	
Ply Thickness	(in)	0.0055	0.0049 - 0.0061	

LAMINATE PROPERTY SUMMARY

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

Volume 2, Chapter 4 Carbon Fiber Composites

MATERIA	AL: AS4	12k/3502 unidi	rectional tape				4.2.8(a)
FIBER VO PLY THIC	OLUME: 59-6 CKNESS: 0.00	33 wt% 51 % 049-0.0061 in.	COMP: DE VOID CON	C/Ep 147-UT AS4/3502 Tension, 1-axis [0]₃ 75/A, -65/A, 180/W B30, Mean			
TEST ME				S CALCULATIO		В30,	wean
AST	M D 3039-76		Linear	r portion of curve	÷		
NORMAL	IZED BY: Spe	cimen thickness			·	PT)	
Temperat		7		-6		18	
	Content (%)	amb	ient	amb	ient	1.1 -	
Source C	m at T, RH ode	4	٥	4	٥	(1 4	
Source C	oue	Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean	258	mododiod	231	measured	261	modourou
	Minimum	191		162		140	
	Maximum	317		285		317	
	C.V.(%)	9.83		13.4		14.8	
	B-value	205		173		200	
F_1^{tu}	Distribution	Weibull	(2)	Weibull	(2)	Weibull	(2)
(ksi)	C ₁	269		244		276	
. ,	C ₂	11.2		8.82		9.39	
	No. Specimens	3	6	3	8	4	0
	No. Batches	5		5	5	5	
	Data Class	B3	30	B3	30	B3	30
	Mean Minimum	19.3 15.6		19.2 16.8		19.7 15.1	
	Maximum	21.0	(2)	23.2	(2)	23.3	(2)
E_1^t	C.V.(%)	5.74		6.31		6.87	
(Msi)	No. Specimens	3		3		4	
	No. Batches Data Class	5 Me		5 Me		5 Mean	
	Mean						
v_{12}^{t}	No. Specimens No. Batches						
12	Data Class						
	Mean						
	Minimum Maximum						
	C.V.(%)						
tu	B-value						
$arepsilon_1^{ ext{tu}}$	Distribution						
(με)	C ₁ C ₂						
	No. Specimens No. Batches						
	Data Class						

Conditioned at 160°F, 95-100% relative humidity until the moisture content was between 1.1 and 1.3%.
 Only normalized data were made available for analysis.

Volume 2, Chapter 4 Carbon Fiber Composites

MATERIA	AL: AS	4 12k/3502 unidi	rectional tape				4.2.8(b)
FIBER VO PLY THIO	OLUME: 59- CKNESS: 0.0	33 wt% COMP: DENSITY: 1.56-1.59 g/cm ³ 61 % VOID CONTENT: 0.0-1.0% 055-0.0059 in. VOID CONTENT: 0.0-1.0%			AS4 Tensio [(25	C/Ep 147-UT AS4/3502 Tension, 1-axis [0] ₈ 250/W	
TEST ME				S CALCULATIO		B30,	Mean
AST	M D 3039-76		Linea	r portion of curv	'e		
NORMAL	IZED BY: Spe	ecimen thickness	and batch fibe	er volume to 60	% (0.0055 in. C	PT)	
Tempera		25					
	Content (%)	1.1 -					
Equilibriu Source C	m at T, RH	(1					
Source C	ode	4 Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean	256	MEASULEU	Tiomaii260	Measured	Normalized	MEASUIEU
	Minimum	200					
	Maximum	301					
	C.V.(%)	9.39					
	B-value	191					
F_1^{tu}	Distribution	ANOVA	(2)				
(ksi)	C ₁	25.0					
()	C_2	2.61					
	No. Specimens	3					
	No. Batches Data Class	B					
	Mean	20.1					
	Minimum	17.8					
_t	Maximum	23.9	(2)				
$\mathrm{E}_1^{\mathrm{t}}$	C.V.(%)	7.32					
(Msi)	No. Specimens	3					
	No. Batches Data Class	e Me					
	Mean						
t	No. Specimens No. Batches						
v_{12}^{t}	Data Class						
	Mean						
	Minimum						
	Maximum						
	C.V.(%)						
	B-value						
$arepsilon_1^{ ext{tu}}$	Distribution						
(με)	C ₁						
(mc)	C_2						
	No. Specimens						
	No. Batches						
	Data Class				ontent was bety		

Conditioned at 160°F, 95-100% relative humidity until the moisture content was between 1.1 and 1.3%.
 Only normalized data were made available for analysis.

MATER	IAL: AS4	1 12k/3502 unidire	ctional tape			Table 4.2.8(c)		
FIBER VOLUME: 59-6		33 wt% 60 % 052-0.0059 in.	COMP: DENSITY: 1.56-1.59 g VOID CONTENT: 0.0-1.0%		1	C/Ep 147-UT AS4/3502 Fension, 2-axis [90] ₂₄ /A, -65/A, 180/W,		
TEST M	ETHOD:		MODULUS CAL	CULATION:		250/W B30, Mean		
AS	TM D 3039-76		Linear portic	on of curve				
NORMA	LIZED BY: Not	normalized						
Tempera	ature (°F)	75	-65	180	250			
Moisture	e Content (%)	ambient	ambient	1.1 - 1.3	1.1 - 1.3			
-	um at T, RH			(1)	(1)			
Source	Code	49	49	49	49			
	Mean	7.76	6.65	4.39	2.68			
	Minimum Maximum	6.26 10.2	2.48 8.93	3.52 5.20	2.13 3.40			
	C.V.(%)	10.2	18.0	8.44	12.3			
F_2^t	B-value Distribution	6.28 Normal	4.57 Weibull	3.46 ANOVA	1.65 ANOVA			
(ksi)	C ₁	7.76	7.09	0.380	0.348			
(101)	C ₂	0.832	7.20	2.43	2.94			
	No. Specimens	30	30	30	30			
	No. Batches	5	5	5	5			
	Data Class	B30	B30	B30	B30			
	Mean Minimum	1.35 1.28	1.44 1.32	1.21 1.14	0.958 0.912			
	Maximum	1.49	1.58	1.35	1.06			
E_2^t	C.V.(%)	4.26	4.16	4.02	3.61			
(Msi)	No. Specimens	30	30	30	30			
()	No. Batches	5	5	5	5			
	Data Class	Mean	Mean	Mean	Mean			
v_{21}^{t}	Mean No. Specimens							
• 21	No. Batches Data Class							
	Mean							
	Minimum							
	Maximum C.V.(%)							
	B-value							
$arepsilon_2^{ ext{t}}$	Distribution							
(με)	C ₁							
	C ₂							
	No. Specimens							
	No. Batches							
	Data Class							

(1) Conditioned at 160°F, 95-100% relative humidity until the moisture content was between 1.1 and 1.3%.

MATERIA	AL: AS4	12k/3502 unidii	rectional tape				4.2.8(d)	
FIBER V PLY THI	OLUME: 55-5 CKNESS: 0.00	97 wt% 99 % 954-0.0060 in.				C/Ep 147-UT AS4/3502 Compression, 1-axis [0] ₁₉ 75/A, -65/A, 180/W		
TEST ME	ETHOD:			S CALCULATIO		B30, Mea	an, Interim	
AST	M D 3410A-75		Linear	r portion of curve	9			
	-	cimen thickness				PT)		
Tempera		7		-6			30	
	Content (%)	amb	ient	amb	ient	1.1 -		
	im at T, RH		2		0	(1		
Source C	ode	4		4	-	4	-	
	Mean	Normalized 204	Measured	Normalized 233	Measured	Normalized 176	Measured	
	Mean Minimum Maximum C.V.(%)	168 226 6.45		233 207 252 5.63		146 200 6.31		
F ₁ ^{cu}	B-value Distribution	171 ANOVA	(3)	(2) Weibull	(3)	145 ANOVA	(3)	
(ksi)	C ₁ C ₂	13.5 2.44		238 23.0		11.5 2.65		
	No. Specimens No. Batches Data Class	30 5 B30		1: 5 Inte	i	30 5 B30		
E_1^c	Mean Minimum Maximum C.V.(%)	18.0 16.9 19.4 3.19	(3)	18.8 17.1 20.5 5.43	(3)	18.6 17.5 20.0 3.36	(3)	
(Msi)	No. Specimens No. Batches Data Class	30 5 Mean		16 5 Interim		30 5 Mean		
v_{12}^{c}	Mean No. Specimens No. Batches							
	Data Class Mean Minimum Maximum							
ε ₁ ^{cu} (με)	C.V.(%) B-value Distribution C ₁ C ₂							
	No. Specimens No. Batches Data Class							

Conditioned at 160°F, 95-100% relative humidity until the moisture content was between 1.1 and 1.3%.
 Basis values are presented only for A and B data classes.
 Only normalized data were made available for analysis.

Volume 2, Chapter 4 Carbon Fiber Composites

MATERIA	AL: AS4	12k/3502 unidir	ectional tape				Table	4.2.8(e)		
FIBER VO	OLUME: 55-5 CKNESS: 0.00	7 wt% COMP: DENSITY: 1.56-1.57 g/cm ³ 9 % VOID CONTENT: 0.0% 54-0.0060 in.				AŠ4 Compress [(25	C/Ep 147-UT AS4/3502 Compression, 1-axis [0] ₁₉ 250/W			
TEST ME	THOD:		MODULU	S CALCUL	ATION:		B30,	B30, Mean		
AST	M D 3410A-75		Linear	r portion of	curve					
	-	cimen thickness		er volume t	0 60% (0.0055 in. C	PT)			
Temperat		25								
	Content (%)	1.1 -	1.3							
Equilibriu	m at T, RH	(1)							
Source C	ode	49	9							
		Normalized	Measured	Normaliz	zed M	Measured	Normalized	Measured		
	Mean Minimum Maximum C.V.(%)	147 118 170 9.42								
F ₁ ^{cu}	B-value Distribution	119 Weibull	(2)							
(ksi)	C ₁ C ₂	153 12.5								
	No. Specimens No. Batches Data Class	30 5 B3								
E ₁ ^c	Mean Minimum Maximum C.V.(%)	18.7 17.3 20.6 3.99	(2)							
(Msi)	No. Specimens No. Batches Data Class	3(5 Me								
v_{12}^{c}	Mean No. Specimens No. Batches									
	Data Class									
	Mean Minimum Maximum C.V.(%)									
$\varepsilon_1^{ m cu}$	B-value Distribution									
(με)	C ₁ C ₂									
	No. Specimens No. Batches Data Class									

Conditioned at 160°F, 95-100% relative humidity until the moisture content was between 1.1 and 1.3%.
 Only normalized data were made available for analysis.

MATEF	RIAL: A	NS4 12k/3502 unic	directional tape			Table 4.2.8(f) C/Ep 147-UT	
RESIN CONTENT: 31-33 wt% FIBER VOLUME: 59-60 % PLY THICKNESS: 0.0054-0.0058 in.		COMP: DENSITY VOID CONTENT:	0	Co	AŠ4/3502 Compression, 2-axis [90] ₂₄ 75/A, -65/A, 180/W, 250/W		
TEST N	METHOD:		MODULUS CALC	ULATION:	B	80, Mean, Interim	
AS	STM D 695M (1) (4)	1	Linear po	ortion of curve			
NORM	ALIZED BY: Not	normalized					
Tempe	rature (°F)	75	-65	180	250		
	re Content (%)	ambient	ambient	1.1 - 1.3	1.1 - 1.3		
-	rium at T, RH			(2)	(2)		
Source		49	49	49	49		
	Mean	34.6	49.8	24.7	18.4		
	Minimum Maximum	27.5 40.4	42.5 57.2	23.0 26.7	17.0 19.9		
	C.V.(%)	40.4 9.53	10.4	3.23	4.99		
	0.1.(/0)	0.00	10.1	0.20	1.00		
	B-value	26.6	(3)	22.3	15.3		
F_2^{cu}	Distribution	ANOVA	Weibull	ANOVA	ANOVA		
(ksi)	C ₁	3.37	52.1	0.836	0.990		
	C ₂	2.38	11.3	2.80	3.18		
	No. Specimens	30	15	30	30		
	No. Batches	5	5	5	5		
	Data Class	B30	Interim	B30	B30		
	Mean	1.41	1.68	1.24	1.09		
	Minimum	1.29	1.57	1.14	0.973		
-	Maximum C.V.(%)	1.60 4.86	1.95 6.07	1.41 4.90	1.41 9.44		
E_2^c	C.v.(<i>7</i> 0)	4.00	0.07	4.90	9.44		
(Msi)	No. Specimens	30	15	30	30		
(10131)	No. Batches	5	5	5	5		
	Data Class	Mean	Interim	Mean	Mean		
	Mean			T			
C	No. Specimens No. Batches						
v_{21}^{c}							
	Data Class						
	Mean Minimum						
	Maximum						
	C.V.(%)						
	Durahua						
- CII	B-value Distribution						
ε_2^{cu}							
(με)	C ₁ C ₂						
	No. Specimens						
	No. Batches						
	Data Class						

(4) The test method, ASTM D 695M-96, was withdrawn on July 10, 1996.

Volume 2, Chapter 4 Carbon Fiber Composites

MATER	AL: AS4	4 12k/3502 unidire	ctional tape			able 4.2.8(g) :/Ep 147-UT		
FIBER VOLUME: 59-6		33 wt% 60 % 053-0.0059 in.	COMP: DENSITY: 1.56-1.59 g/cm ³ VOID CONTENT: 0.0-1.0%		cm ³ Sh	AS4/3502 Shear, 12-plane [±45] _{4s} 75/A, -65/A, 180/W, 250/W		
TEST M	ETHOD:		MODULUS CAL	CULATION:	B3	0, B18, Mean		
ASTM D 3518-76 Linear portion of curve								
NORMA	LIZED BY: Not	normalized						
Tempera	ature (°F)	75	-65	180	250			
	Content (%)	ambient	ambient	1.1 - 1.3	1.1 - 1.3			
	um at T, RH			(1)	(1)			
Source		49	49	49	49			
	Mean	14.8	15.3	13.5	11.5			
	Minimum	13.7	13.3	12.5	10.5			
	Maximum	15.8	16.2	14.1	12.4			
	C.V.(%)	3.18	4.58	3.39	4.27			
	B-value	13.4	13.9	11.8	10.3			
F ^{su}	Distribution	ANOVA	ANOVA	ANOVA	ANOVA			
F_{12}^{su}		0.503	0.706	0.502	0.503			
(ksi)	C ₁ C ₂	2.91	2.04	3.24	2.32			
	02	2.01	2.01	0.21	2.02			
	No. Specimens	36	23	37	42			
	No. Batches	5	5	5	5			
	Data Class	B30	B18	B30	B30			
	Mean Minimum	0.543 0.496	0.769 0.738	0.217	0.141 0.103			
	Maximum	0.496	0.738	0.169 0.260	0.205			
C^{s}	C.V.(%)	5.16	3.69	9.25	17.9			
G_{12}^s	0.1.(/0)	0110	0.00	0.20	1110			
(Msi)	No. Specimens	33	23	33	41			
(No. Batches	5	5	5	5			
	Data Class	Mean	Mean	Mean	Mean			
	Mean							
	Minimum							
	Maximum C.V.(%)							
	J. v. (70)							
	B-value							
γ_{12}^{su}	Distribution							
(με)	C ₁							
	C ₂							
	No. Specimens							
	No. Batches							
	Data Class							

(1) Conditioned at 160°F, 95-100% relative humidity until the moisture content was between 1.1 and 1.3%.

MIL-HDBK-17-2F Volume 2, Chapter 4 Carbon Fiber Composites

MATERIAL:	AS4 12k/3502 unidirectional tape*			C/Ep 147-UT AS4/3502 Summary				
FORM:	Hercules AS4/3502 unidirectional tap	Hercules AS4/3502 unidirectional tape prepreg						
FIBER:	Hercules AS4 12k, surface-treated	MATRIX:	Hercules 3502					
T _g (dry):	460°F T _g (wet):	Tg METHOD:	ТМА					
PROCESSING:	Autoclave cure: 275°F, 45 min.; 350°	F, 2 hours, 85 psig; F	Postcure: 400°F, 4 ho	urs				

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL. REFER TO PAGE 4-64 TO VIEW ADDITIONAL DATA SETS ON THIS MATERIAL SYSTEM.

Date of fiber manufacture	12/80 - 2/82	Date of testing	
Date of resin manufacture		Date of data submittal	6/90
Date of form manufacture	12/80 - 2/82	Date of analysis	1/93
Date of composite manufacture			

	75°F/A	-65°F/A	265°F/A	75°F/W	265°F/W	
Tension, 1-axis	IIII		IIII		IIII	
Tension, 2-axis	II-I			II-I	II-I	
Tension, 3-axis						
Compression, 1-axis		II-I	II-I		II-I	
Compression, 2-axis						
Compression, 3-axis						
Shear, 12-plane						
Shear, 23-plane						
Shear, 31-plane						

LAMINA PROPERTY SUMMARY

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

Volume 2, Chapter 4 Carbon Fiber Composites

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.79	1.78 - 1.81	
Resin Density	(g/cm ³)	1.26		
Composite Density	(g/cm ³)	1.58		
Fiber Areal Weight	(g/m ²)			
Fiber Volume	(%)	60	63 - 68	
Ply Thickness	(in)		0.0047 - 0.0062	

LAMINATE PROPERTY SUMMARY

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

Volume 2, Chapter 4 Carbon Fiber Composites

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.									
RESIN CONTENT: 25-29 wt% COMP: DENSITY: 1.59-1.62 g/cm³ A \$ \$ 43502 FIBER VOLUME: 63-68 % VOID CONTENT: VOID CONTENT: 1.59-1.62 g/cm³ Tension, 1-axis 10b PLY THICKNESS: 0.0055-0.0058 in. MODULUS CALCULATION: Tension, 1-axis 10b 75/A, 265/A, 265/W Interim ASTM D 3039-76 MORMALIZED BY: Specimen thickness and batch fiber volume to 60% (0.0056 in. CPT) Temperature (°F) 75 265 265 Moisture Content (%) ambient ambient wet 462 Source Code 26 26 261 273 Minimum 212 226 148 165 183 196 Maximum 294 323 314 358 287 315 Source Code (3)	MATERIA	AL: AS4	12k/3502 unidi	rectional tape						
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	FIBER VO	OLUME: 63-6	8 %			9-1.62 g/cm ³	AŠ4/3502 Tension, 1-axis [0]₀			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				MODULUS	S CALCULATIO	N:				
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	ASTI	M D 3039-76								
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	NORMAL	IZED BY: Spec	cimen thickness	and batch fibe	er volume to 60%	6 (0.0056 in. C	PT)			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					-	-	-	-		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$										
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$										
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			Normalized	Measured	Normalized	Measured	Normalized	Measured		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		J. v. (70)	0.00	9.49	13.2	10.0	3.03	10.4		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	F ₁ ^{tu}						(3) ANOVA	(3) ANOVA		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		C ₁	21.5	27.2	24.0	30.2	24.0	30.2		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		C ₂	2.20	2.60	2.83	3.01	2.83	3.01		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			3	0	20)	2	5		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
$ \begin{array}{ c c c c c c } (\text{Msi}) & \text{No. Specimens} & 29 & 20 & 25 & & \\ \text{No. Batches} & 5 & 4 & 5 & & \\ \text{Data Class} & \text{Interim} & \text{Interim} & & \text{Interim} & & \\ \hline & \text{Mean} & 0.340 & 0.356 & 0.280 & & \\ \text{No. Specimens} & 30 & 20 & 25 & & \\ \text{No. Batches} & 5 & 4 & 5 & & \\ \hline & \text{Data Class} & \text{Interim} & & \text{Interim} & & & \\ \hline & \text{Data Class} & \text{Interim} & & & & & & \\ \hline & \text{Mean} & 12400 & 13900 & 12400 & & \\ \hline \end{array} $	\mathbf{E}_{1}^{t}									
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			_	_		_	_	_		
Data Class Interim Interim Interim Mean 0.340 0.356 0.280 No. Specimens 30 20 25 V ₁₂ No. Batches 5 4 5 Data Class Interim Interim Interim Mean 12400 13900 12400	(Msi)									
Mean 0.340 0.356 0.280 No. Specimens 30 20 25 v ₁₂ No. Batches 5 4 5 Data Class Interim Interim Interim Mean 12400 13900 12400										
v_{12}^t No. Batches545Data ClassInterimInterimInterimMean124001390012400		Mean		0.340		0.356		0.280		
Data ClassInterimInterimInterimMean124001390012400	t									
Mean 12400 13900 12400	v_{12}^{ι}									
			inte		Inte		inte			
Minimum 10200 10400 9220		Minimum		10200		10400		9220		
Maximum 14400 15700 13900				14400	15700			13900		
C.V.(%) 8.65 12.0 8.95	C.V.(%)			8.65		12.0		8.95		
B-value (3) (3) (3)		B-value		(3)				(3)		
ε_1^{tu} Distribution ANOVA ANOVA ANOVA ANOVA	$arepsilon_1^{ ext{tu}}$	Distribution						ANOVA		
(με) C ₁ 1120 1850 1170										
C ₂ 2.62 3.92 2.87	/	C ₂		2.62		3.92		2.87		
No. Specimens 30 20 25		No. Specimens	3	0	20)	2	5		
No. Batches 5 4 5										
Data Class Interim Interim Interim			Inte	rim	Inte	rim	Inte	rim		

Conditioned at 180°F, ambient relative humidity for 2 days.
 Conditioned at 180°F, 75% relative humidity for 10 days.
 Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

MATERIAL: AS4 12k/3502 unidirectional tape Table 4.2.8(i) Table 4.2.8(i) RESIN CONTENT: 25-29 wf% COMP: DENSITY: 1.59-1.62 g/cm ³ Tension, 2-wiss PUT HICKNESS: 0.055-0.0059 in. MODULUS CALCULATION: Tension, 2-wiss 1901s: TEST METHOD: ASTM D 3039-76 MODULUS CALCULATION: Interim 1.59-1.62 g/cm ³ Total, 75/W, 265/W NORMALIZED BY: Not normalized MODULUS CALCULATION: Interim 1.50-1.62 g/cm ³ Total, 75/W, 265/W Normalized Temperature (*F) 75 75 265 Interim 1.50-1.62 g/cm ³ Normalized Temperature (*F) 75 75 265 Interim 1.50 Source Code 26 26 26 26 Interim Interim B-value 8.04 3.27 3.29 Maximum 1.63 13.0 Interim Interim	<u>* AL</u>	L DOCUMENTATION	PRESENTLY	REQUIRED W	AS NOT SUPF	LIED FOR THIS	MATERIAL.			
RESIN CONTENT: 25-29 wt% IPLY THICKNESS: COMP: DENSITY: 1.59-1.62 g/cm ³ A54/3502 Tension, 2-axis [90] ₃ . TEST METHOD: NORMALIZED BY: Not normalized MODULUS CALCULATION: Tension, 2-axis [90] ₃ . NORMALIZED BY: Not normalized Wold CONTENT: Wold CONTENT: Interim Moisture Content (%). 75 265 26 26 Moisture Content (%). 33 2.54 2.62 26 Maximum 10.6 4.15 4.15 4.15 GV: (3) (3) (3) (3) F ³ / ₁ Distorie Content (%) 13.5 16.3 13.0 B-value (3) 2.54 2.62 26 Maximum 10.6 4.15 4.15 4.15 No. Specimens 30 15 20 20 20 No. Specimens 30 15 20 20 20 20 No. Specimens 30 15 20 20 20 20 20 20	MATER	RIAL: AS4	12k/3502 unidi	rectional tape						
TEST METHOD: MODULUS CALCULATION: Interim ASTM D 3039-76 NORMALLIZED BY: Not normalized Temperature (°F) 75 76 26 <th 2"2"2"2"2"2<="" colspan="2" td=""><td colspan="3">FIBER VOLUME: 63-68 %</td><td></td><td>ENSITY: 1.5 NTENT:</td><td>59-1.62 g/cm³</td><td colspan="2">AŠ4/3502 Tension, 2-axis [90]₁₅</td></th>	<td colspan="3">FIBER VOLUME: 63-68 %</td> <td></td> <td>ENSITY: 1.5 NTENT:</td> <td>59-1.62 g/cm³</td> <td colspan="2">AŠ4/3502 Tension, 2-axis [90]₁₅</td>		FIBER VOLUME: 63-68 %				ENSITY: 1.5 NTENT:	59-1.62 g/cm ³	AŠ4/3502 Tension, 2-axis [90] ₁₅	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TEST	NETHOD:		MODULU	S CALCULATI	ON:				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	AS	STM D 3039-76								
Moisture Content (%) Equilibrium at T, RH Source Code ambient (1) wet (2) wet (2) wet (2) wet (2) wet (2) (2) (2) Mean 8.04 3.27 3.29 3.29 3.21 3.29 Minimum 5.93 2.54 2.62 2.62 3.29 Maximum 10.6 4.15 4.15 4.15 Kisi C.V.(%) 13.5 16.3 13.0 Kisi C1 1.11 0.560 0.452 No. Specimens 30 15 20 No. Specimens 30 15 20 Maximum 1.50 1.04 1.04 Maximum 1.58 1.10 1.10 E ¹ C.V.(%) 2.76 5.1 4.3 Maximum 1.58 1.10 1.10 1.04 E ¹ C.V.(%) 2.76 5.1 4.3 Data Class Interim Interim Interim V1 No. Batches 5	NORM	ALIZED BY: Not	normalized							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Tempe	rature (°F)								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		C.V.(%)	13.5	16.3	13.0					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		B-value	(3)	(3)	(3)					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	F_2^{tu}	Distribution	ANÔVA							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		C ₁	1.11	0.560	0.452					
No. Batches Data Class 5 Interim 3 Interim 4 Interim Mean Minimum 1.50 1.04 1.04 Mean Maximum 1.50 1.04 1.04 Less 0.95 0.95 0.95 Maximum 1.58 1.10 1.10 E ¹ / ₂ C.V.(%) 2.76 5.1 4.3 (Msi) No. Specimens No. Batches 5 3 4 Data Class Interim Interim Interim Mean No. Specimens 5 3 4 Mean No. Specimens 5500 3320 3440 Maximum 7390 4200 4200 ZV-1 No. Batches - - Maximum 7390 4200 4200 C.V.(%) 13.7 13.3 12.1 B-value (3) (3) (3) \mathcal{E}_2^{11} Distribution Weibull ANOVA ANOVA ANOVA ANOVA Q2 506 45			2.36	3.79	3.16					
No. Batches Data Class 5 Interim 3 Interim 4 Interim Mean Minimum 1.50 1.04 1.04 Mean Maximum 1.50 1.04 1.04 Less 0.95 0.95 0.95 Maximum 1.58 1.10 1.10 E ¹ / ₂ C.V.(%) 2.76 5.1 4.3 (Msi) No. Specimens No. Batches 5 3 4 Data Class Interim Interim Interim Mean No. Specimens 5 3 4 Mean No. Specimens 5500 3320 3440 Maximum 7390 4200 4200 ZV-1 No. Batches - - Maximum 7390 4200 4200 C.V.(%) 13.7 13.3 12.1 B-value (3) (3) (3) \mathcal{E}_2^{11} Distribution Weibull ANOVA ANOVA ANOVA ANOVA Q2 506 45		No Specimens	30	15	20					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Data Class			Interim					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	г ^t									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	E ₂	0(/0)	2.1.0	0.1						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(Msi)	No. Specimens	30	15	20					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $. ,	No. Batches	5	3	4					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Interim	Interim	Interim					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ν_{21}^{t}									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	• 21	Data Class								
$\begin{array}{c c} Maximum \\ C.V.(\%) \\ \hline \\ \mathcal{E}_{2}^{tu} \\ (\mu \epsilon) \\ \mathcal{E}_{2}^{tu} \\ No. Specimens \\ No. Batches \\ \end{array} \begin{array}{c c} 7390 \\ 13.7 \\ 13.3 \\ \hline \\ 13.3 \\ 12.1 \\ \hline \\ ANOVA \\ ANOVA \\ ANOVA \\ ANOVA \\ ANOVA \\ \hline \\ ANOVA \\ ANOVA \\ \hline \\ \hline \\ ANOVA \\ \hline \\ \hline \\ ANOVA \\ \hline \\ $						1 1				
$\begin{array}{c c} C.V.(\%) & 13.7 & 13.3 & 12.1 \\ \hline \mathcal{E}_2^{tu} & Distribution & (3) & (3) & (3) \\ (\mu\epsilon) & C_1 & 5820 & 506 & 456 \\ C_2 & 7.67 & 5.66 & 3.79 \\ \hline No. Specimens & 30 & 15 & 20 \\ No. Batches & 5 & 3 & 4 \\ \end{array}$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.V.(%)	13.7	13.3	12.1					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
(με) C1 5820 506 456 C2 7.67 5.66 3.79 No. Specimens 30 15 20 No. Batches 5 3 4	$\varepsilon_2^{ m tu}$	Distribution	Weibull	ANOVA	ANOVA					
C2 7.67 5.66 3.79 No. Specimens 30 15 20 No. Batches 5 3 4		C ₁	5820	506	456					
No. Batches 5 3 4		C ₂	7.67	5.66	3.79					
No. Batches 5 3 4		No Specimens	30	15	20					
		Data Class	Interim	Interim	Interim					

Conditioned at 180°F, ambient relative humidity for 2 days.
 Conditioned at 180°F, 75% relative humidity for 63 days.
 Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

* ALL	ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.									
MATERI	AL: AS4	12k/3502 unidi	rectional tape				4.2.8(j)			
FIBER V	CONTENT: 25-2 OLUME: 63-6 CKNESS: 0.00	9-1.62 g/cm ³	C/Ep 147-UT AS4/3502 Compression, 1-axis [0] ₆							
TEST ME	ETHOD:		MODULUS	S CALCULATIO	N:		5/A, 265/W erim			
AST	M D 3410C									
NORMAL	LIZED BY: Spec	cimen thickness	and batch fibe	er volume to 60%	6 (0.0055 in. C	PT)				
Tempera		-6		26		26				
	Content (%) Im at T, RH	amb (1		amb (1		(2				
Source C		2		26		2				
		Normalized	Measured	Normalized	Measured	Normalized	Measured			
	Mean	226	253	228	249	176	192			
	Minimum	173	206	142 275	150	139	146			
	Maximum C.V.(%)	307 16.8	325 14.1	15.0	292 15.1	208 11.5	228 13.3			
	0. v.(70)	10.0	14.1	13.0	10.1	11.5	10.0			
F ₁ ^{cu}	B-value Distribution	(3) Weibull	(3) Weibull	(3) Weibull	(3) Weibull	(3) Weibull	(3) Weibull			
(ksi)	C ₁	242	269	241	264	184	203			
	C ₂	6.23	7.45	8.66	9.19	10.6	9.32			
	No. Specimens	1		15		1				
	No. Batches	3		3		3				
	Data Class Mean	Inte 19.3	21.1	Inte 21.2	23.2	Inte 19.6	21.4			
	Minimum	17.1	19.3	17.1	19.3	18.5	20.5			
	Maximum	21.8	23.7	23.1	26.3	20.6	22.5			
E_1^c	C.V.(%)	6.63	7.30	9.53	9.70	3.85	3.70			
(Msi)	No. Specimens	1	5	15	5	15				
	No. Batches Data Class	3 Interim		3 Inte		3 Interim				
	Mean	inte				inte				
v_{12}^{c}	No. Specimens No. Batches									
12	Data Class									
	Mean		16200		13400		10500			
	Minimum Maximum		11100 21200		7370		7770 12800			
	C.V.(%)		17.4		16000 16.2		14.1			
	B-value		(3)		(3)		(3)			
$arepsilon_1^{ m cu}$	Distribution		Weibull		Weibull		Weibull			
(με)	C ₁		17400		14200		11100			
4/	C ₂		6.39		8.53		8.71			
	No. Specimens	1	5	15	5	1	5			
	No. Batches	3	3	3		3	5			
	Data Class	Inte	rim	Inte	rim	Inte	rim			

Conditioned at 180°F, ambient relative humidity for 2 days.
 Conditioned at 150°F, 98% relative humidity for 14 days.
 Basis values are presented only for A and B data classes.

4.2.9 Celion 3000/E7K8 plain weave fabric

Material Description:

Material: Celion 3000/E7K8

- Form: Plain weave fabric, areal weight of 195 g/m², typical cured resin content of 37-44%, typical cured ply thickness of 0.0075-0.0084 inches.
- Processing: Autoclave cure; 310°F, 85 psi for 2 hours. Low exotherm profile for processing of thick parts.

General Supplier Information:

- Fiber: Celion 3000 fibers are continuous carbon filaments made from PAN precursor. Filament count is 3000 filaments/tow. Typical tensile modulus is 34 x 10⁶ psi. Typical tensile strength is 515,000 psi. Good drape.
- Matrix: E7K8 is a medium flow, low exotherm epoxy resin. Good tack; up to 20 days out-time at ambient temperature.

Maximum Short Term Service Temperature: 300°F (dry), 190°F (wet)

Typical applications: Primary and secondary structural applications on commercial and military aircraft, jet engine applications such as stationary airfoils and thrust reverser blocker doors.

4.2.9 Celion 3000/E7K8 plain weave fabric*

MATERIAL:	Celion 3000/E7K8 plain weave fabric			C/Ep 195-PW Celion 3000/E7K8 Summary
FORM:	U.S. Polymeric Celion 3000/E7K8 plair	n weave fabric, Grad	de 195 prepreg	
FIBER:	Celanese Celion 3000	MATRIX:	U.S. Polymeric E	7K8
T _g (dry):	T _g (wet):	T _g METHOD:		
PROCESSING:	Autoclave: 310°F, 2 hours, 85 psig			

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

Date of fiber manufacture		Date of testing	
Date of resin manufacture		Date of data submittal	1/88
Date of form manufacture 2	2/86 - 3/86	Date of analysis	1/93
Date of composite manufacture			

75°F/A		-65°F/A	180°F/A		75°F/W	180°F/W	
SS-S		SS			SSSS	SSS-	
SS-S		SS-S			SS-S	SS-S	
SS-S		SS-S	SS-S		SS-S	SS-S	
SS-S		SS	SS		SS-S	SS	
S		S	S		S	S	
	SS-S SS-S SS-S SS-S	SS-S SS-S SS-S SS-S	SS-S SS SS-S SS-S SS-S SS-S SS-S SS	SS-S SS SS-S SS-S SS-S SS-S SS-S SS-S SS-S SS SS-S SS	SS-S SS SS SS-S SS-S SS-S SS-S SS-S SS-S SS-S SS-S SS-S SS-S SS-S SS-S	SS-SSSSSSSSS-SSS-SSS-SSS-SSS-SSS-SSS-SSSSSSS-SSSSSSS-SSSSS	SS-SSSSSSSSSS-SS-SSS-SSS-SSS-SSS-SSS-SSS-SSS-SSS-SSS-SSS-SSSSSSS-SSS-SSS-SSSSSSS-SSS-S

LAMINA PROPERTY SUMMARY

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.8		
Resin Density	(g/cm ³)	1.28		
Composite Density	(g/cm ³)	1.54	1.37 - 1.55	
Fiber Areal Weight	(g/m ²)	195		
Fiber Volume	(%)	50	51 - 56	
Ply Thickness	(in)	0.0075	0.0078 - 0.011	

LAMINATE PROPERTY SUMMARY

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERIA		on 3000/E7K8 p				Table 4.2.9(a)
FIBER V	OLUME: 55-5	8 wt% 6 % 78-0.0085 in.	COMP: DE VOID CON		C/Ep 195-PW Celion 3000/E7K8 Tension, 1-axis [0 _f] ₁₀ 75/A, -65/A	
TEST ME	THOD:	ION:	Screening			
AST	M D 3039-76					
NORMAL	IZED BY: Spec			er volume to 5	57% (0.0075 in. C	PT)
	ture (°F) Content (%) m at T, RH	7 amb		a	-65 mbient	
Source C		2	0		20	
		Normalized	Measured	Normalized	d Measured	Normalized Measured
	Mean Minimum Maximum C.V.(%)	132 120 143 4.7	128 115 140 5.8	110 101 118 6.2	106 98.4 113 5.4	
F ₁ ^{tu}	B-value Distribution	(1) Weibull	(1) Weibull	(1) Normal	(1) Normal	
(ksi)	C ₁ C ₂	135 25.7	132 21.4	110 6.88	106 5.74	
	No. Specimens No. Batches Data Class	20 1 Screening		Sc	5 1 reening	
$\mathrm{E}_{1}^{\mathrm{t}}$	Mean Minimum Maximum C.V.(%)	9.67 9.49 9.98 1.2	9.38 8.85 9.74 2.5	9.98 9.82 10.0 1.0	9.66 9.46 9.90 1.8	
(Msi)	No. Specimens No. Batches Data Class	20 1 Screening		5 1 Screening		
v_{12}^{t}	Mean No. Specimens No. Batches	5				
	Data Class Mean Minimum Maximum C.V.(%)	Scree	ening 13700 12300 14800 4.5		11000 10200 11600 5.4	
$arepsilon_1^{ ext{tu}}$	B-value Distribution		(1) Weibull		(1) Normal	
(με)	C ₁ C ₂		14000 26.8		11000 592	
	No. Specimens No. Batches Data Class	2 1 Scree		Sc	5 1 reening	

Volume 2, Chapter 4 Carbon Fiber Composites

DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS * (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERI	,	on 3000/E7K8 p				Table 4.2.9(b)
FIBER V			COMP: DE VOID CON		C/Ep 195-PW Celion 3000/E7K8 Tension, 1-axis [0 _f] ₁₀	
TEST ME	ETHOD:		N:	75/W, 180/W Screening		
	M D 3039-76					
NORMAL	LIZED BY: Spe	cimen thickness	and batch fibe	er volume to 57%	% (0.0075 in. C	CPT)
Equilibriu	Content (%) um at T, RH	(*	et I)	18 wo (1	et I)	
Source C	Code	2 Normalized	0 Measured	2 Normalized	0 Measured	Normalized Measured
	Mean Minimum Maximum C.V.(%)	125 111 130 6.3	122 105 129 8.1	123 114 131 6.5	120 112 127 6.3	Normalized Weasured
F_1^{tu}	B-value Distribution	(2) Normal	(2) Normal	(2) Normal	(2) Normal	
(ksi)	C ₁ C ₂	125 7.93	122 9.93	123 7.99	120 7.52	
	No. Specimens No. Batches Data Class		5 1 Screening		5 I ening	
E_1^t	Mean Minimum Maximum C.V.(%)	9.23 8.93 9.53 2.5	9.01 8.81 9.20 1.7	9.55 9.37 9.84 1.9	9.33 9.15 9.63 2.0	
(Msi)	No. Specimens No. Batches Data Class	Scree		5 1 Screening		
v_{12}^{t}	Mean No. Specimens No. Batches	Ę	0.0620 5	5	0.0560	
	Data Class Mean Minimum Maximum C.V.(%)	Scree	ening 13700 12100 14300 6.9	Scree	ening 12800 11200 14100 9.6	
$arepsilon_1^{ ext{tu}}$ ($\mu arepsilon$)	B-value Distribution C ₁ C ₂		(2) Normal 13700 939		(2) Normal 12800 1230	
	C ₂ No. Specimens No. Batches Data Class		939 5 I ening	5 1 Scree	5	

Conditioned at 160°F, 85% relative humidity for 7 days.
 Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERI		Table 4.2.9(c)				
FIBER V	OLUME: 51-5	4 wt% 4 % 79-0.0084 in.	COMP: DE VOID CON	C/Ep 195-PW Celion 3000/E7K8 Tension, 1-axis [0 _f] ₁₂		
TEST ME	ETHOD:		MODULUS	S CALCULATIO	DN:	75/A, -65/A Screening
	M D 3039-76			0 0/ 2002/ 111		g
		cimen thickness	and batch fibe	er volume to 57	% (0.0075 in. C	PT)
	ture (°F) Content (%) ım at T, RH	7 amb	5 vient		65 bient	
Source C		2	0	2	20	
		Normalized	Measured	Normalized	Measured	Normalized Measured
	Mean Minimum Maximum C.V.(%)	132 106 147 7.5	122 100 136 7.5	122 117 126 2.8	115 111 123 4.3	
F ₁ ^{tu}	B-value Distribution	(1) Weibull	(1) Weibull	(1) Normal	(1) Normal	
(ksi)	C ₁ C ₂	136 16.4	126 17.3	122 3.44	116 4.97	
	No. Specimens No. Batches Data Class	20 1 Screening			5 1 ening	
	Mean	9.96	9.21	9.29	8.82	
	Minimum Maximum	9.30 9.98	8.74 9.78	8.95 9.66	8.51 9.41	
E_1^t	C.V.(%)	1.2	2.5	2.8	4.0	
(Msi)	No. Specimens No. Batches Data Class	2 Scree	l		5 1 ening	
v_{12}^{t}	Mean No. Specimens No. Batches					
	Data Class Mean		14100			
	Minimum Maximum C.V.(%)		13600 14600 2.6			
$arepsilon_1^{ ext{tu}}$	B-value Distribution		(1) Normal			
(με)	C ₁ C ₂		14100 371			
	No. Specimens No. Batches Data Class	Scree	l			

Volume 2, Chapter 4 Carbon Fiber Composites

DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS * (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERI	,	on 3000/E7K8 p			Table 4.2.9(d)	
FIBER V			COMP: DE VOID CON	C/Ep 195-PW Celion 3000/E7K8 Tension, 1-axis [0 _f] ₁₂		
TEST ME	ETHOD:		N:	75/W, 180/W Screening		
	M D 3039-76					· · · · · · · · · · · · · · · · · · ·
NORMAL	LIZED BY: Spe	cimen thickness	s and batch fibe	er volume to 57%	% (0.0075 in. C	CPT)
	ture (°F) Content (%) ım at T, RH	w	'5 et 1)	18 wi (1	et	
Source C	Code		0	2	-	Normalizzati Massurad
	Mean	Normalized 145	Measured 129	Normalized 148	Measured 133	Normalized Measured
	Minimum Maximum C.V.(%)	143 143 148 1.6	125 131 1.8	139 154 4.0	124 142 5.6	
F_1^{tu}	B-value Distribution	(2) Normal	(2) Normal	(2) Normal	(2) Normal	
(ksi)	C ₁ C ₂	145 2.23	129 2.37	148 5.94	133 7.50	
	No. Specimens No. Batches Data Class		5 1 ening	5 1 Scree		
E_1^t	Mean Minimum Maximum C.V.(%)	10.6 10.1 11.4 4.9	9.42 8.79 10.0 5.0	10.3 10.1 10.5 1.3	9.21 8.91 9.53 2.7	
(Msi)	No. Specimens No. Batches Data Class		5 1 ening	5 1 Scree		
v_{12}^{t}	Mean No. Specimens No. Batches	Į	0.0560 5 1	5	0.0560	
	Data Class	Scre	ening	Scree	ening	
	Mean Minimum Maximum C.V.(%)		13400 12300 14300 5.30			
$oldsymbol{arepsilon}_1^{ ext{tu}}$	B-value Distribution		(2) Normal			
(με)	C ₁ C ₂		13400 713			
	No. Specimens No. Batches Data Class		5 1 ening			

Conditioned at 160°F, 85% relative humidity for 7 days.
 Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERIA		Table 4.2.9(e)				
RESIN CO FIBER VO PLY THIO						C/Ep 195-PW Celion 3000/E7K8 Tension, 2-axis [0 _f] ₁₀ 75/A, -65/A
TEST ME	THOD:		MODULUS	TION:	Screening	
	M D 3039-76					
NORMAL	IZED BY: Spe			er volume to	57% (0.0075 in. C	PT)
	ture (°F) Content (%) m at T, RH		5 bient	а	-65 mbient	
Source C		2	0		20	
		Normalized	Measured	Normalize		Normalized Measured
	Mean Minimum Maximum C.V.(%)	128 120 137 3.6	127 115 134 3.7	113 101 125 9.1	111 100 122 8.9	
F_2^{tu}	B-value Distribution	(1) Normal	(1) Normal	(1) Normal	(1) Normal	
(ksi)	C ₁ C ₂	128 4.64	127 4.69	113 10.3	111 9.89	
	No. Specimens No. Batches Data Class		0 1 ening	Sc	5 1 creening	
E_2^t	Mean Minimum Maximum C.V.(%)	9.50 9.36 9.69 0.98	9.37 9.04 9.71 1.8	9.51 9.29 9.65 1.6	9.34 9.20 9.68 2.1	
(Msi)	No. Specimens No. Batches Data Class		0 1 ening	Sc	5 1 creening	
v_{21}^{t}	Mean No. Specimens No. Batches					
	Data Class Mean Minimum Maximum C.V.(%)		13400 12600 14200 3.5		11700 10700 12700 7.7	
$arepsilon_2^{ ext{tu}}$	B-value Distribution		(1) Weibull		(1) Normal	
(με)	C ₁ C ₂		13600 32.5		11700 902	
	No. Specimens No. Batches Data Class		0 1 ening	Sc	5 1 creening	

Volume 2, Chapter 4 Carbon Fiber Composites

DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS * (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERI	,	on 3000/E7K8 p				Table 4.2.9(f)
FIBER V			COMP: DE VOID CON	C/Ep 195-PW Celion 3000/E7K8 Tension, 2-axis [90 _f] ₁₀		
TEST ME	ETHOD:		MODULUS	S CALCULATIO	N:	75/W, 180/W Screening
	M D 3039-76					
NORMAL	LIZED BY: Spe	cimen thickness	and batch fibe	er volume to 57%	% (0.0075 in. C	PT)
Equilibriu	Content (%) Im at T, RH	7: we (1	et)	18 we (1	et)	
Source C	Code	2 Normalized	0 Measured	20 Normalized	0 Measured	Normalized Measured
	Mean Minimum Maximum C.V.(%)	119 105 130 7.8	117 104 126 7.3	130 129 132 0.89	128 125 131 1.8	Normalized Measured
F_2^{tu}	B-value Distribution	(2) Normal	(2) Normal	(2) Normal	(2) Normal	
(ksi)	C ₁ C ₂	119 9.35	117 8.51	130 1.16	128 2.35	
	No. Specimens No. Batches Data Class	5 1 Scree		5 1 Scree		
E_2^t	Mean Minimum Maximum C.V.(%)	9.08 8.98 9.21 1.2	8.92 8.73 9.14 1.6	9.35 9.26 9.48 1.2	9.18 8.96 9.38 1.8	
(Msi)	No. Specimens No. Batches Data Class	5 1 Scree		5 1 Scree		
v_{21}^{t}	Mean No. Specimens No. Batches					
	Data Class Mean Minimum		13100 11400		14200 13700	
	Maximum C.V.(%)		14400 8.7		14800 3.5	
$arepsilon_2^{ ext{tu}}$	B-value Distribution		(2) Normal		(2) Normal	
(με)	C ₁ C ₂		13100 1135		14200 490	
	No. Specimens No. Batches Data Class	5 1 Scree		5 1 Scree		

Conditioned at 160°F, 85% relative humidity for 7 days.
 Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERIA	AL: Celio		3000/E7K8 plain weave fabric						
FIBER V	OLUME: 53-5	0 wt% 5 % 79-0.0084 in.	COMP: DE VOID CON	5 g/cm ³ -0.75%	C/Ep 195-PW Celion 3000/E7K8 Compression, 1-axis [0 _f] ₁₀ 75/A, -65/A, 180/A				
TEST METHOD: MODULUS CALCULATION:						ening			
SAC	MA SRM 1-88								
	·	cimen thickness	s and batch fibe	er volume to 57	% (0.0075 in. C	PT)			
	ture (°F) Content (%) ım at T, RH		5 bient		65 pient	18 amb	30 bient		
Source C			0		20		0		
		Normalized	Measured	Normalized	Measured	Normalized	Measured		
	Mean Minimum Maximum C.V.(%)	104 90.5 122 8.3	101 87.7 120 8.7	121 113 132 5.9	118 111 126 4.7	97.4 87.5 105 7.2	94.5 85.1 100 7.1		
F ₁ ^{cu}	B-value Distribution	(1) Weibull	(1) Weibull	(1) Normal	(1) Normal	(1) Normal	(1) Normal		
(ksi)	C ₁ C ₂	108 13.0	105 12.1	121 7.19	118 5.58	97.4 7.00	94.5 6.72		
	No. Specimens No. Batches Data Class	20 1 Screening			5 1 ening	5 1 Screening			
E_1^c	Mean Minimum Maximum C.V.(%)	9.88 9.56 10.3 2.3	9.02 8.65 9.29 2.0	9.83 9.75 9.95 1.0	9.33 9.20 9.48 1.1	9.45 9.14 9.66 2.3	9.16 8.89 9.37 2.0		
(Msi)	No. Specimens No. Batches Data Class		0 1 ening		5 1 ening		5 1 ening		
v_{12}^{c}	Mean No. Specimens No. Batches								
	Data Class Mean Minimum Maximum C.V.(%)		10900 10500 11200 2.2		12200 12000 12300 1.0		10400 10200 10800 2.3		
$arepsilon_1^{ m cu}$	B-value Distribution		(1) Weibull		(1) Normal		(1) Normal		
(με)	C ₁ C ₂		11000 54.2		12200 122		10400 239		
	No. Specimens No. Batches Data Class		0 1 ening		5 1 ening		5 1 ening		
		0016	ching	0016	uning	00100	uning		

Volume 2, Chapter 4 Carbon Fiber Composites

DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS * (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERI		on 3000/E7K8 p		LIED FOR THIS MATERIAL. Table 4.2.9(h)		
FIBER V	OLUME: 54-	37 wt% 56 % 073-0.0086 in.	Comp: De Void Con	5 g/cm ³ 0.70%	C/Ep 195-PW Celion 3000/E7K8 Compression, 1-axis [0 _f] ₁₀	
TEST ME	THOD:		MODULUS	S CALCULATIO	N:	75/W, 180/W Screening
	CMA SRM 1-88					
NORMAL	LIZED BY: Spe	cimen thickness	and batch fibe	er volume to 57%	6 (0.0075 in. C	PT)
Equilibriu	Content (%) um at T, RH	7: we (1	et)	18 we (1	et)	
Source C	Jode	2 Normalized	0 Measured	20 Normalized	Measured	Normalized Measured
	Mean Minimum Maximum C.V.(%)	94.9 89.7 102 5.5	92.6 88.2 98.8 4.9	78.9 72.7 83.2 5.7	77.6 70.5 82.3 6.0	Nonnail200 Modeared
F ₁ ^{cu}	B-value Distribution	(2) Normal	(2) Normal	(2) Normal	(2) Normal	
(ksi)	C ₁ C ₂	94.9 5.47	92.6 4.57	78.9 4.53	77.6 4.65	
	No. Specimens No. Batches Data Class	5 1 Scree		5 1 Scree		
E_1^c	Mean Minimum Maximum C.V.(%)	9.39 8.80 10.2 6.3	8.92 8.12 9.79 6.8	8.97 8.45 9.54 4.4	8.52 8.18 8.80 3.5	
(Msi)	No. Specimens No. Batches Data Class	5 1 Scree		5 1 Scree		
v_{12}^{c}	Mean No. Specimens No. Batches					
	Data Class Mean Minimum Maximum C.V.(%)		9800 8970 10400 6.0		8130 7620 8600 4.4	
$arepsilon_1^{ m cu}$	B-value Distribution		(2) Normal		(2) Normal	
(με)	C ₁ C ₂		9800 590		8130 356	
	No. Specimens No. Batches Data Class	5 1 Scree		5 1 Scree		

Conditioned at 160°F, 85% relative humidity for 7 days.
 Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERI			IMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MA 3000/E7K8 plain weave fabric Table 4.2.9						
FIBER V	SIN CONTENT: 38-40 wt% COMP: DENSITY: 1.55 g/cm ³ ER VOLUME: 52-54 % VOID CONTENT: 0.0% Y THICKNESS: 0.0078-0.0084 in. VOID CONTENT: 0.0%					C/Ep 195-PW Celion 3000/E7K8 Compression, 1-axis [0 _f] ₁₂			
TEST METHOD: MODULUS CALCULATION:						5/A, 180/A eening			
SAC	CMA SRM 1-88								
NORMAL	LIZED BY: Spec	cimen thickness	and batch fibe	er volume to 579	% (0.0075 in. C	PT)			
	iture (°F) Content (%) ım at T, RH	7 amb	5 bient		65 bient		30 bient		
Source C		2	0	2	0	2	0		
		Normalized	Measured	Normalized	Measured	Normalized	Measured		
	Mean Minimum Maximum C.V.(%)	114 86.4 128 9.5	107 84.4 121 9.1	133 127 139 3.9	122 116 129 4.6	103 96.0 114 6.8	97.6 89.2 107 7.2		
F ₁ ^{cu}	B-value Distribution	(1) Weibull	(1) Weibull	(1) Normal	(1) Normal	(1) Normal	(1) Normal		
(ksi)	C ₁ C ₂	118 13.8	111 14.0	133 5.22	122 5.60	103 6.99	97.6 7.04		
	No. Specimens No. Batches Data Class	20 1 Screening		5 1 Screening		5 1 Screening			
	Mean	8.22	7.80	8.45	7.71	8.40	7.67		
C	Minimum Maximum	8.07 8.50	7.51 8.05	8.27 8.73	7.43 8.09	8.20 8.54	7.58 7.84		
E_1^c	C.V.(%)	1.6	2.2	2.3	3.4	1.5	1.4		
(Msi)	No. Specimens No. Batches	2	l	5 1 Screening		5 1 Screening			
v_{12}^{c}	Data Class Mean No. Specimens No. Batches	Scree	ening	30180	ening	3018	ening		
	Data Class Mean		13500						
	Minimum Maximum C.V.(%)		13000 13700 1.6						
$arepsilon_1^{ m cu}$	B-value Distribution		(1) Nonpara.						
(με)	C ₁ C ₂		10 1.25						
	No. Specimens No. Batches Data Class	2 Scree	l						

Volume 2, Chapter 4 Carbon Fiber Composites

DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS * (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERI		on 3000/E7K8 pl	LIED FOR THIS MATERIAL. Table 4.2.9(j)			
FIBER V	OLUME: 52-5	80-0.0084 in.				C/Ep 195-PW Celion 3000/E7K8 Compression, 1-axis [0 _f] ₁₂ 75/W, 180/W
TEST METHOD: MODULUS CALCULATION: SACMA SRM 1-88					Screening	
SAC	MA SRM 1-88					
NORMAL	LIZED BY: Spe	cimen thickness	and batch fibe	er volume to 57%	6 (0.0075 in. C	PT)
Tempera	ture (°F) Content (%)	75 W6		18 we		
Equilibriu	im at T, RH	(1)	(1)	
Source C	Code	20 Normalized		20 Normalized		Normalized Measured
	Mean	96.1	Measured 90.7	80.2	Measured 75.7	Normalized Measured
	Minimum	83.9	78.4	74.4	72.2	
	Maximum	107	101	83.3	79.9	
	C.V.(%)	9.3	9.4	4.7	4.4	
F ₁ ^{cu}	B-value Distribution	(2) Normal	(2) Normal	(2) Normal	(2) Normal	
(ksi)	C ₁ C ₂	96.1 8.91	90.7 8.55	80.2 3.73	75.7 3.31	
	No. Specimens No. Batches Data Class	5 1 Scree		5 1 Scree		
	Mean	9.08	8.30	9.36	8.54	
	Minimum	8.84	7.91	9.14	8.20	
E_1^c	Maximum C.V.(%)	9.17 1.5	8.62 3.2	9.57 2.0	8.84 2.9	
\mathbf{L}_1						
(Msi)	No. Specimens No. Batches Data Class	5 1 Scree		5 1 Scree		
	Mean	00100	ining		, in ig	
v_{12}^{c}	No. Specimens No. Batches					
	Data Class		10700			
	Mean Minimum Maximum C.V.(%)		10700 10600 11000 1.5			
	B-value		(2)			
$\varepsilon_1^{ m cu}$	Distribution		Normal			
(με)	C ₁ C ₂		10700 164			
	No. Specimens No. Batches Data Class	5 1 Scree				

Conditioned at 160°F, 85% relative humidity for 7 days.
 Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERIAL: Celion 3000/E7K8 plain weave fabric							le 4.2.9(k)
RESIN CON FIBER VOL PLY THICK	UME:	36-39 wt ⁶ 54-56 % 0.0079-0	١	COMP: DENSITY: /OID CONTENT:	Celior SBS 75/A, ·	C/Ep 195-PW Celion 3000/E7K8 SBS, 31-plane [0 _f] ₁₄ 75/A, -65/A, 180/A,	
TEST METH			r	MODULUS CALCI	JLATION:		W, 180/W creening
	D 2344-68	N 1 <i>i</i>					
NORMALIZ		Not norm				I	I
Temperatur Moisture Co Equilibrium	ontent (%) at T, RH		75 ambient	-65 ambient	180 ambient	75 wet (1)	180 wet (1)
Source Cod			20	20	20	20	20
1	Mean		10.3	11.6	9.70	9.81	6.92
l	Minimum		9.43	10.7	9.34	9.24	6.60
	Maximum		11.4	13.6	9.94	10.4	7.22
	C.V.(%)		5.7	10.8	3.0	7.0	3.4
	B-value		(2)	(2)	(2)	(2)	(2)
F ₃₁ ^{sbs}	Distribution	n	Normal	Normal	Normal	Normal	Normal
(ksi)	C ₁		10.3	11.6	9.70	9.81	6.92
(-)	C ₂		0.446	1.25	0.293	0.505	0.237
	No. Specir No. Batche		20 1	5 1	5 1	5 1	5 1
	Data Class	6	Screening	Screening	Screening	Screening	Screening

(1) Conditioned at 160°F, 85% relative humidity for 7 days.

(2) Short beam strength test data are approved for Screening Data Class only.

Volume 2, Chapter 4 Carbon Fiber Composites

DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS * (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERIA	L: Celion 3	Tab	ole 4.2.9(l) p 195-PW			
FIBER VC	RESIN CONTENT: 39 wt% COMP: DENSITY: 1.55 g/cm ³ Celion 3000/E FIBER VOLUME: 54 % VOID CONTENT: 0.29% SBS, 31-pla PLY THICKNESS: 0.0080 in. [0r]12 75/A, -65/A, 1					
TEST ME	THOD: // D 2344-68	Ν	10DULUS CALCI	JLATION:		W, 180/W creening
NORMALI		nalized				
Temperati	ure (°F)	75	-65	180	75	180
Moisture C Equilibriur	Content (%) n at T, RH	ambient	ambient	ambient	wet (1)	wet (1)
Source Co		20	20	20	20	20
	Mean	9.76	10.2	9.72	9.72	8.72
	Minimum	9.00	9.54	8.76	8.76	8.35
	Maximum	10.7	10.5	10.3	10.3	9.00
	C.V.(%)	4.8	3.9	6.1	6.1	2.8
	B-value	(2)	(2)	(2)	(2)	(2)
F ₃₁ ^{sbs}	Distribution	Normal	Normal	Normal	Normal	Normal
(ksi)	C ₁	9.76	10.2	9.72	9.72	8.72
	C ₂	0.470	0.395	0.591	0.591	0.247
	No. Specimens No. Batches	20	5 1	5 1	5	5
	Data Class	Screening	Screening	Screening	Screening	Screening

Conditioned at 160°F, 85% relative humidity for 7 days.
 Short beam strength test data are approved for Screening Data Class only.

4.2.10 HITEX 33 6k/E7K8 plain weave fabric

Material Description:

Material: HITEX 33-6k/E7K8

- Form: Plain weave fabric, areal weight of 195 g/m², typical cured resin content of 37-41%, typical cured ply thickness of 0.0085 inches.
- Processing: Autoclave cure; 310°F, 85 psi for 2 hours. Low exotherm profile for processing of thick parts.

General Supplier Information:

- Fiber: HITEX 33 fibers are continuous carbon filaments made from PAN precursor. Filament count is 6000 filaments/tow. Typical tensile modulus is 33 x 10⁶ psi. Typical tensile strength is 560,000 psi. Good drape.
- Matrix: E7K8 is a medium flow, low exotherm epoxy resin. Good tack; up to 20 days out-time at ambient temperature.

Maximum Short Term Service Temperature: 300°F (dry), 190°F (wet)

Typical applications: Primary and secondary structural applications on commercial and military aircraft, jet engine applications such as stationary airfoils and thrust reverser blocker doors.

4.2.10 HITEX 33 6k/E7K8 plain weave fabric*

MATERIAL:	HITEX 33 6k/E7K8 plain weave fabric	:		C/Ep 195-PW HITEX 33/E7K8 Summary
FORM:	U.S. Polymeric Hitex 33 6k/E7K8 plai	n weave fabric prep	reg	
FIBER:	Hitco HITEX 33 6k G'	MATRIX:	U.S. Polymeric E7	K8
Tg(dry):	T _g (wet):	Tg METHOD:		
PROCESSING:	Autoclave: 310°F, 2 hours, 85 psig			

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

Date of fiber manufacture	Date of testing	
Date of resin manufacture	Date of data submittal	1/88
Date of form manufacture	Date of analysis	1/93
Date of composite manufacture		

	75°F/A	-65°F/A	180°F/A	75°F/W	180°F/W	
Tension, 1-axis						
Tension, 2-axis	SSSS	SS-S		SSSS	SSSS	
Tension, 3-axis						
Compression, 1-axis	SS-S	SS	SS	SS-S	SS	
Compression, 2-axis	SS-S	SS	SS	SS-S	SS	
Compression, 3-axis						
Shear, 12-plane						
Shear, 23-plane						
Shear, 31-plane						
SB Strength, 31-plane	S	S		S	S	

LAMINA PROPERTY SUMMARY

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.77		
Resin Density	(g/cm ³)	1.27		
Composite Density	(g/cm ³)	1.56		
Fiber Areal Weight	(g/m ²)	195		
Fiber Volume	(%)	58	47 - 55	
Ply Thickness	(in)	0.0085	0.0077 - 0.0099	

LAMINATE PROPERTY SUMMARY

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, s = Screening, - = no data (See Table 1.4.2(c))

Volume 2, Chapter 4 Carbon Fiber Composites

DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS * (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERI		EX 33 6k/E7K8		WAS NOT SUPP	Table	4.2.10(a) 195-PW		
FIBER V	OLUME: 51-	41 wt% 55 % 087-0.0098 in.	Comp: De Void Con		1.53-1.55 g/cm ³ 0.0%	HITEX Tensio [9	HITEX 33/E7K8 Tension, 2-axis [90 _f] ₁₂ 75/A, -65/A, 75/W	
TEST ME	ETHOD:		MODULU	S CALCULA	TION:		ening	
AST	M D 3039-76							
NORMAL	LIZED BY: Spe	cimen thickness	and batch fibe	er volume to	57% (0.0076 in. C	PT)		
	ture (°F) Content (%) ım at T, RH	7 amb		а	-65 ambient	w	75 ret 1)	
Source C		2	0		20		20	
	-	Normalized	Measured	Normalize		Normalized	Measured	
	Mean Minimum Maximum C.V.(%)	131 120 139 4.3	124 103 136 6.8	126 122 131 3.1	122 111 131 6.7	134 130 137 2.8	119 114 125 3.8	
F ₂ ^{tu}	B-value Distribution	(2) Weibull	(2) Weibull	(2) Normal	(2) Normal	(2) Normal	(2) Normal	
(ksi)	C ₁ C ₂	134 28.2	128 17.8	126 3.88	122 8.16	134 3.69	120 4.55	
	No. Specimens No. Batches Data Class	1	20 1 Screening		5 1 creening		5 1 ening	
E_2^t	Mean Minimum Maximum C.V.(%)	8.65 8.01 9.65 6.2	8.14 7.52 8.62 3.1	8.10 7.73 8.29 2.7	7.82 7.54 8.26 3.4	9.61 9.26 9.94 2.8	8.55 8.20 9.13 4.1	
(Msi)	No. Specimens No. Batches Data Class	1	20 1 Screening		5 1 creening		5 1 ening	
v_{21}^{t}	Mean No. Specimens No. Batches	5	0.0460 5 1				0.0540 5 1	
	Data Class	Scree	ening			Scre	ening	
	Mean Minimum Maximum C.V.(%)	14300 13700 14900 3.8			15600 14600 16500 4.4		10500 9930 10800 3.2	
$arepsilon_2^{ ext{tu}}$	B-value Distribution		(2) Normal		(2) Normal		(2) Normal	
(με)	C ₁ C ₂		14300 541		15600 687		10500 335	
	No. Specimens No. Batches Data Class	5 1 Scree	1	S	5 1 creening		5 1 ening	

Conditioned at 160°F, 85% relative humidity for 14 days.
 Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS * (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERIA	<u>NE 1989). ALL DO</u> AL: HI	TEX 33 6k/E7K8						4.2.10(b)
RESIN C FIBER V	ONTENT: 41 OLUME: 51	wt%	COMP: DE VOID CON	ENSITY:	1.53 0.0%	g/cm ³	C/Ep HITEX Tensio [9	195-PW 33/E7K8 n, 2-axis 0 _f] ₁₂ 0/W
TEST ME			MODULUS	S CALCUL		۷:		ening
AST	M D 3039-76							
		ecimen thickness		er volume t	o 57%	(0.0076 in. C	PT)	
	Content (%) Im at T, RH	w (1	30 et 1) 0					
		Normalized	Measured	Normaliz	zed	Measured	Normalized	Measured
	Mean Minimum Maximum C.V.(%)	138 120 155 10.2	122 107 135 9.1					
F ₂ ^{tu}	B-value Distribution	(2) Normal	(2) Normal					
(ksi)	C ₁ C ₂	138 14.1	123 11.1					
	No. Specimens No. Batches Data Class	1	5 1 ening					
E_2^t	Mean Minimum Maximum C.V.(%)	9.91 9.11 10.7 7.2	8.80 8.23 9.23 5.3					
(Msi)	No. Specimens No. Batches Data Class		5 1 enina					
v_{21}^{t}	Mean No. Specimens No. Batches	i E	0.0700 5 1					
	Data Class Mean Minimum Maximum C.V.(%)	Scree	ening 10400 9840 10800 3.6					
$arepsilon_2^{ ext{tu}}$	B-value Distribution		(2) Normal					
(με)	C ₁ C ₂		10400 372					
	No. Specimens No. Batches Data Class		5 1 ening					

Conditioned at 160°F, 85% relative humidity for 14 days.
 Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERI	<u>NE 1989). ALL DOC</u> AL: HITE	EX 33 6k/E7K8			Table	4.2.10(c)	
FIBER V			Comp: De Void Con	NSITY: 1.5 ITENT: 0.0	1 g/cm ³ %	HITEX Compress [0	195-PW 33/E7K8 sion, 1-axis 0 _f] ₁₂
TEST ME	ETHOD:		MODULUS	S CALCULATIC	N:		5/A, 180/A ening
SAC	CMA SRM 1-88						
NORMAL	LIZED BY: Spee	cimen thickness	and batch fibe	er volume to 57°	% (0.0076 in. C	PT)	
	ture (°F) Content (%) ım at T, RH	7 amb			65 bient		30 pient
Source C		2	0	2	0	2	0
-		Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean Minimum Maximum C.V.(%)	136 111 158 8.4	112 98.4 128 7.5	155 147 164 5.5	128 118 139 7.5	130 118 139 6.3	107 94.9 117 7.8
F ₁ ^{cu}	B-value Distribution	(1) Weibull	(1) Weibull	(1) Normal	(1) Normal	(1) Normal	(1) Normal
(ksi)	C ₁ C ₂	141 13.3	116 14.5	155 8.51	128 9.57	130 8.21	107 8.22
	No. Specimens No. Batches Data Class	20 1 Screening		Scree	l		5 1 ening
	Mean 9.11 7.53		10.1	8.30	9.37	7.75	
E_1^c	Minimum Maximum C.V.(%)	8.64 9.63 3.0	6.83 8.17 5.2	9.72 10.8 4.0	7.74 8.76 5.1	9.15 9.66 2.4	7.38 8.66 7.1
(Msi)	No. Specimens	2	n	Ę	5		5
(10101)	No. Batches Data Class	1 Scree			l	5 1 Screening	
v_{12}^{c}	Mean No. Specimens No. Batches						
	Data Class Mean Minimum		14400 13700				
	Maximum C.V.(%)		15200 3.1				
$\varepsilon_1^{\rm cu}$	B-value Distribution		(1) Weibull				
(με)	C ₁ C ₂		14600 34.7				
	No. Specimens No. Batches Data Class	2 1 Scree					

Volume 2, Chapter 4 Carbon Fiber Composites

DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL. *

MATERI		EX 33 6k/E7K8				Table 4.2.10(d)
FIBER V			Comp: De Void Con	g/cm ³ %	C/Ep 195-PW HITEX 33/E7K8 Compression, 1-axis [0 _f] ₁₂	
TEST ME	тнор.			S CALCULATIO	N·	75/W, 180/W Screening
	MA SRM 1-88		MODOLOG	D CALCOLATIO	IN.	ocreening
		cimen thickness	and batch fibe	er volume to 57%	6 (0.0076 in. C	PT)
	Content (%)	7: W0	et	18 We	et	
Equilibriu Source C	im at T, RH	(1		(1		
Course c		Normalized	Measured	Normalized	Measured	Normalized Measured
	Mean Minimum Maximum C.V.(%)	133 130 139 2.8	110 100 116 5.8	68.5 54.2 75.8 13.6	56.4 46.7 62.2 12.0	
F ₁ ^{cu}	B-value Distribution	(2) Normal	(2) Normal	(2) Normal	(2) Normal	
(ksi)	$C_1 \\ C_2$	133 3.71	110 6.36	68.5 9.31	56.4 6.79	
	No. Specimens No. Batches Data Class	5 1 Scree		5 1 Scree		
E_1^c	Mean Minimum Maximum C.V.(%)	8.78 8.41 9.07 3.2	7.24 7.04 7.51 2.5	9.43 9.32 9.64 1.4	7.78 7.69 7.89 9.5	
(Msi)	No. Specimens No. Batches Data Class	5 1 Scree		5 1 Scree		
v_{12}^{c}	Mean No. Specimens No. Batches					
	Data Class Mean Minimum Maximum C.V.(%)		14600 14000 15400 3.6			
$\varepsilon_1^{ m cu}$	B-value Distribution		(2) Normal			
(με)	C ₁ C ₂		14600 525			
	No. Specimens No. Batches Data Class	5 1 Scree				

Conditioned at 160°F, 85% relative humidity for 14 days.
 Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERIA		EX 33 6k/E7K8		REQUIRED W		Table	4.2.10(e)
FIBER V	OLUME: 51-5	1 wt% 2 % 83-0.0087 in.	COMP: DE VOID CON		3 g/cm ³ %	HITEX Compres	195-PW 33/E7K8 sion, 2-axis 0f _] 6 5/A, 180/A
TEST ME	ETHOD:		MODULUS	S CALCULATIC	N:		ening
SAC	MA SRM 1-88						
NORMAL	IZED BY: Spee	cimen thickness	and batch fibe	er volume to 579	% (0.0076 in. C	PT)	
	ture (°F) Content (%) ım at T, RH		5 bient		65 bient		80 pient
Source C		2	0	2	0		0
		Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean Minimum Maximum C.V.(%)	104 77.9 125 13.1	92.4 70.4 109 12.6	128 111 138 8.0	114 98.8 123 8.1	99.4 86.4 113 12.0	88.6 77.0 101 12.0
F ₂ ^{cu}	B-value Distribution	(1) Weibull	(1) Weibull	(1) Normal	(1) Normal	(1) Normal	(1) Normal
(ksi)	C ₁ C ₂	110 9.70	97.4 10.5	128 10.3	114 9.18	99.4 11.9	88.6 10.6
	No. Specimens No. Batches Data Class	20 1 Screening		1	5 1 Screening		5 1 ening
	Mean	8.92	8.21	9.49	8.74	9.07	8.35
E_2^c	Minimum Maximum C.V.(%)	8.50 9.40 2.5	7.78 8.77 3.4	9.36 9.58 0.9	8.65 8.93 1.3	8.95 9.18 1.3	8.20 8.52 1.7
(Msi)	No. Specimens No. Batches		0	Ę			5
	Data Class	Scree	-	Scree		1 Screening	
v_{21}^{c}	Mean No. Specimens No. Batches						
	Data Class Mean Minimum Maximum		10900 10400 11400				
	C.V.(%) B-value		2.4 (1)				
$\varepsilon_2^{\mathrm{cu}}$	Distribution		Weibull				
(με)	C ₁		11100				
	C ₂		46.5				
	No. Specimens No. Batches Data Class		0 1 ening				

Volume 2, Chapter 4 Carbon Fiber Composites

DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL. *

MATERI		EX 33 6k/E7K8 p			13 NOT 3011	LIED FOR THIS MATERIAL. Table 4.2.10(f)
FIBER V	OLUME: 51-5	1 wt% 2 % 80-0.0083 in.	COMP: DE VOID CON	3 g/cm ³ %	C/Ep 195-PW HITEX 33/E7K8 Compression, 2-axis [90 _f] ₆ 75/W, 180/W	
TEST ME	ETHOD:		MODULUS	S CALCULATIO	N:	Screening
SAC	CMA SRM 1-88					
NORMAL	LIZED BY: Spe	cimen thickness	and batch fibe	er volume to 57%	6 (0.0076 in. C	PT)
Equilibriu	Content (%) um at T, RH	75 we (1	et)	18 we (1	et)	
Source C	Code	20 Normalized) Measured	20 Normalized) Measured	Normalized Measured
	Mean Minimum	99.2 80.9	88.5 72.2	84.0 74.2	74.9 66.1	Normalized Measured
	Maximum C.V.(%)	112 12.1	100 12.1	88.8 7.0	79.2 6.9	
F ₂ ^{cu}	B-value Distribution	(2) Normal	(2) Normal	(2) Normal	(2) Normal	
(ksi)	C ₁ C ₂	99.2 12.0	88.5 10.7	84.0 5.8	74.9 5.20	
	No. Specimens No. Batches Data Class	5 1 Scree		5 1 Scree		
E ^c ₂	Mean Minimum Maximum C.V.(%)	9.30 8.74 9.56 3.5	8.56 7.98 8.78 3.9	8.96 8.69 9.31 2.9	8.25 8.03 8.43 2.0	
(Msi)	No. Specimens No. Batches Data Class	5 1 Scree		5 1 Scree		
v_{21}^{c}	Mean No. Specimens No. Batches					
	Data Class Mean Minimum Maximum		10200 9910 10900			
$\varepsilon_2^{ m cu}$	C.V.(%) B-value Distribution		3.7 (2) Normal			
ε ₂ (με)	C_1 C_2		10200 381			
	No. Specimens No. Batches Data Class	5 1 Scree				

Conditioned at 160°F, 85% relative humidity for 14 days.
 Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERIA	AL: HITE	EX 33 6k/E7K8				Table	4.2.10(g)
FIBER V			COMP: DE VOID CON		1 g/cm ³ %	C/Ep 195-PW HITEX 33/E7K8 Compression, 2-axis [90 _f] ₁₂ 75/A, -65/A, 180/A	
TEST ME	ETHOD:		MODULUS	S CALCULATIC	DN:		ening
SAC	CMA SRM 1-88						
NORMAL	_IZED BY: Spec	cimen thickness	and batch fibe	er volume to 57°	% (0.0076 in. C	PT)	
	ture (°F) Content (%) ım at T, RH	7 amb			65 bient		30 pient
Source C		2	0	2	0	2	0
		Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean Minimum Maximum C.V.(%)	132 114 145 5.7	110 97.9 118 5.3	147 138 161 6.0	122 115 127 4.1	132 128 146 5.9	110 106 117 4.7
F ₂ ^{cu}	B-value Distribution	(1) Weibull	(1) Weibull	(1) Normal	(1) Normal	(1) Normal	(1) Normal
(ksi)	$C_1 \\ C_2$	136 21.6	113 23.4	147 8.78	122 5.02	132 7.73	110 5.12
	No. Specimens No. Batches Data Class	20 1 Screening			5 1 Screening		5 1 ening
E ^c ₂	Mean Minimum Maximum C.V.(%)	8.74 8.41 9.20 2.6	7.27 6.70 8.06 4.7	9.09 8.12 10.1 9.1	7.54 7.07 7.90 5.6	9.11 8.61 9.49 3.8	7.57 7.41 7.71 1.5
(Msi)	No. Specimens No. Batches Data Class	2 1 Scree	l	5 1 Screening		5 1 Screening	
v_{21}^{c}	Mean No. Specimens No. Batches						
	Data Class Mean Minimum Maximum C.V.(%)		14100 13400 14700 2.6				
$\varepsilon_2^{ m cu}$	B-value Distribution		(1) Weibull				
(με)	C ₁ C ₂		14300 46.4				
	No. Specimens No. Batches Data Class	2 1 Scree	l				

Volume 2, Chapter 4 Carbon Fiber Composites

DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL. *

MATERI	,	EX 33 6k/E7K8			LIED FOR THIS MATERIAL. Table 4.2.10(h)	
FIBER V			Comp: De Void Con	1 g/cm ³ %	C/Ep 195-PW HITEX 33/E7K8 Compression, 2-axis [90 _f] ₁₂	
TEST ME	-тнор.			S CALCULATIO	N	75/W, 180/W Screening
	CMA SRM 1-88		MODOLOG	5 6/ (2002/(110		Corocining
NORMAL	LIZED BY: Spe	cimen thickness	and batch fibe	er volume to 57%	% (0.0076 in. C	PT)
Equilibriu	Content (%) um at T, RH	7: we (1	et)	18 wi (1	et I)	
Source C	Code	2 Normalized	0 Measured	2 Normalized	0 Measured	Normalized Measured
	Mean Minimum Maximum C.V.(%)	117 107 132 9.1	97.4 88.4 105 6.9	61.1 52.2 66.4 9.9	50.8 44.1 57.2 9.9	
F_2^{cu}	B-value Distribution	(2) Normal	(2) Normal	(2) Normal	(2) Normal	
(ksi)	C ₁ C ₂	117 10.6	97.4 6.74	61.1 6.04	50.8 5.01	
	No. Specimens No. Batches Data Class	5 1 Scree		5 1 Scree	l	
E ^c ₂	Mean Minimum Maximum C.V.(%)	8.99 8.48 9.54 4.5	7.48 7.08 7.8 4.0	9.26 8.76 9.69 4.0	7.71 7.32 8.39 6.2	
(Msi)	No. Specimens No. Batches Data Class	5 1 Scree		5 1 Scree		
v_{21}^{c}	Mean No. Specimens No. Batches					
	Data Class Mean Minimum Maximum C.V.(%)		13500 12700 14200 4.2			
$\varepsilon_2^{\rm cu}$	B-value Distribution		(2) Normal			
(με)	C ₁ C ₂		13500 564			
	No. Specimens No. Batches Data Class	5 1 Scree				

Conditioned at 160°F, 85% relative humidity for 14 days.
 Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL. *

MATERIA			3 6k/E7K8 plain v	SENTLY REQUIR		Tab	le 4.2.10(i) p 195-PW
RESIN CO FIBER VC PLY THIC	DLUME:	44 wt% 48 % 0.0077-0	١	COMP: DENSITY: /OID CONTENT:	HITE SBS	7 193-r₩ X 33/E7K8 , 31-plane [90 _f] ₆ -65/A, 180/A	
TEST ME			Ν	IODULUS CALCI	JLATION:		reening
ASTN	M D 2344-76	3					
NORMALI	IZED BY:	Not norm	alized				
Temperati			75.0	-65.0	75.0	180.0	
	Content (%)		ambient	ambient	wet	wet	
Equilibriun Source Co	n at T, RH ode		20	20	(1) 20	(1) 20	
	Mean		8.67	8.83	9.40	8.35	
	Minimum		7.77	8.14	9.20	7.83	
	Maximum	ו	9.40	9.37	9.73	8.80	
	C.V.(%)		5.0	6.3	2.1	4.5	
	B-value		(2)	(2)	(2)	(2)	
F ₃₁ ^{sbs}	Distributio	on	Weibull	Normal	Normal	Normal	
(ksi)	C ₁		8.86	8.83	9.40	8.35	
	C ₂		23.6	0.554	0.202	0.379	
	No. Spec	imens	20	5	5	5	
	No. Batch		1	1	1	1	
	Data Clas	SS	Screening	Screening	Screening	Screening	

Conditioned at 160°F, 85% relative humidity for 14 days.
 Short beam strength test data are approved for Screening Data Class only.

4.2.11 AS4 3k/E7K8 plain weave fabric

Material Description:

Material: AS4-3k/E7K8

- Form: Plain weave fabric, areal weight of 195 g/m², typical cured resin content of 37-48%, typical cured ply thickness of 0.0087 inches.
- Processing: Autoclave cure; 290°F, 85 psi for 2 hours. Low exotherm profile for processing of thick parts.

General Supplier Information:

- Fiber: AS4 fibers are continuous carbon filaments made from PAN precursor, surface treated to improve handling characteristics and structural properties. Filament count is 3000 filaments/tow. Typical tensile modulus is 34 x 10⁶ psi. Typical tensile strength is 550,000 psi. Good drape.
- Matrix: E7K8 is a medium flow, low exotherm epoxy resin. Good tack; up to 20 days out-time at ambient temperature.

Maximum Short Term Service Temperature: >300°F (dry), >190°F (wet)

Typical applications: Primary and secondary structural applications on commercial and military aircraft, jet engine applications such as stationary airfoils and thrust reverser blocker doors.

4.2.11 AS4 3k/E7K8 plain weave fabric*

MATERIAL:	AS4 3k/E7K8 plain weave fabric			C/Ep 195-PW AS4/E7K8 Summary
FORM:	U.S. Polymeric AS4/E7K8 plain we	ave fabric prepreg		
FIBER:	Hercules AS4 3k	MATRIX:	U.S. Polymeric E	7K8
T _g (dry):	T _g (wet):	Tg METHOD:		
PROCESSING:	Autoclave: 290°F. 2 hours. 85 psig			

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

Date of fiber manufacture	Date of testing			
Date of resin manufacture		Date of data submittal	1/88, 6/90	
Date of form manufacture 2/86 - 7/89		Date of analysis	1/93	
Date of composite manufacture				

LAMINA PROPERTY SUMMARY

	75°F/A				
Tension, 1-axis					
Tension, 2-axis					
Tension, 3-axis					
Compression, 1-axis	II-I				
Compression, 2-axis					
Compression, 3-axis					
Shear, 12-plane					
Shear, 23-plane					
Shear, 31-plane					
SB Strength, 31-plane	S				

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.77		
Resin Density	(g/cm ³)	1.28		
Composite Density	(g/cm ³)	1.56		
Fiber Areal Weight	(g/m ²)	195		
Fiber Volume	(%)	58	48 - 55	
Ply Thickness	(in)	0.0087	0.0074 - 0.0088	

LAMINATE PROPERTY SUMMARY

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERI	<u>NE 1989). ALL DOC</u> AL: AS4								
FIBER VOLUME: 48-5		48 wt% COMP: DENSITY: 1.52-1.54 g/cm ³ 55 % VOID CONTENT: 0.0-1.9% 074-0.0085 in.					Compress [0 75	AŠ4/E7K8 Compression, 1-axis [0 _f] ₁₂ 75/A	
TEST ME	ETHOD: CMA SRM 1-88		MODULUS	S CALCUL/	ΑΤΙΟ	N:	Inte	Interim	
SAC	JMA SRIVI 1-88								
NORMAL	LIZED BY: Spe	cimen thickness	and batch fibe	er volume to	o 57%	6 (0.0076 in. C	PT)		
Equilibriu	Content (%) um at T, RH	7! amb							
Source C	Code	20,		Nerreelin	a a 1	Managurad	Normalizad	Magazinad	
	Mean Minimum Maximum C.V.(%)	Normalized 111 64.4 138 11.7	Measured 988 58.0 122 11.3	Normaliz	ea	Measured	Normalized	Measured	
F ₁ ^{cu}	B-value Distribution	(1) ANOVA	(1) ANOVA						
(ksi)	C ₁ C ₂	13.3 1.81	11.3 1.80						
	No. Specimens No. Batches Data Class	206 18 Interim							
E ₁ ^c	Mean Minimum Maximum C.V.(%)	9.02 7.87 10.5 5.24	8.07 7.07 9.04 4.28						
(Msi)	No. Specimens No. Batches Data Class	210 18 Interim							
v_{12}^{c}	Mean No. Specimens No. Batches								
	Data Class Mean		11600						
	Minimum Maximum C.V.(%)		8820 15000 14.5						
$\varepsilon_1^{ m cu}$	B-value Distribution		(1) ANOVA						
(με)	C ₁ C ₂		1730 1.97						
	No. Specimens No. Batches Data Class	19 1 Inte	7						

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERIAL:	AS4/E7K8 plain wea	Table 4	4.2.11(b)						
RESIN CONTENT: FIBER VOLUME: PLY THICKNESS:		COMP: DENSITY: 1.52-1.54 g/cm ³ VOID CONTENT: 0.0-1.9%			C/Ep 195-PW AS4/E7K8 SBS, 31-plane [0 _f] ₁₂ 75/A				
TEST METHOD:		MODULUS	S CALCULATI	ON:	75/A Screening				
ASTM D 2344-84									
NORMALIZED BY: Not normalized									
Temperature (°F)	75								
Moisture Content (%) Equilibrium at T, RH	ambient								
Source Code	20,27								
Mean	9.68								
Minimum Maximum	7.53 14.2								
C.V.(%)	12.0								
Divolue	(4)								
B-value East Distribution	(1) ANOVA								
F_{31}^{sbs} Distribution (ksi) C ₁	1.20								
C_1	1.95								
No. Specimen No. Batches	s 170 16								
Data Class	Screening								

(1) Short beam strength test data are approved for Screening Data Class only.

Volume 2, Chapter 4 Carbon Fiber Composites

4.2.12 AS4/3501-6 (bleed) unidirectional tape

Material Description:

Material: AS4/3501-6

Form: Unidirectional tape, fiber areal weight of 145 g/m², typical cured resin content of 28%-34%, typical cured ply thickness of 0.0041-0.0062 inches.

Processing: Autoclave cure; 240°F, 85 psi for 1 hour; 350°F, 100 psi for 2 hours; bleed system.

General Supplier Information:

- Fiber: AS4 fibers are continuous carbon filaments made from PAN precursor, surface treated to improve handling characteristics and structural properties. Typical tensile modulus is 34 x 10⁶ psi. Typical tensile strength is 550,000 psi.
- Matrix: 3501-6 is an amine-cured epoxy resin. It will retain light tack for a minimum of 10 days at room temperature.

Maximum Short Term Service Temperature: 300°F (dry), 180°F (wet)

Typical applications: General purpose structural applications.

4.2.12 AS4/3501-6 (bleed) unidirectional tape*

MATERIAL:	AS4/3501-	AS4/3501-6 unidirectional tape					
FORM:	Hercules A	Hercules AS4/3501-6 unidirectional tape prepreg					
FIBER:	Hercules A	S4	MATRIX:	Hercules 3501-6			
T _g (dry):	390°F	T _g (wet):	T _g METHOD:	ТМА			
PROCESSING:	Autoclave 100 ± 10 p		60 minutes, 85 psig; 350 ± 1	10°F, 120 ± 10 minutes	,		

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

Date of fiber manufacture	Date of testing	
Date of resin manufacture	Date of data submittal	6/90
Date of prepreg manufacture	Date of analysis	1/93
Date of composite manufacture		

LAMINA PROPERTY SUMMARY

	75°F/A	200°F/A	75°F/W	200°F/W	
Tension, 1-axis	II				
Tension, 2-axis	SS				
Tension, 3-axis					
Compression, 1-axis	IS	II	SS	SS	
Compression, 2-axis					
Compression, 3-axis					
Shear, 12-plane					
Shear, 23-plane					
Shear, 31-plane					
SB Strength, 31-plane	S	S	S	S	

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.8		
Resin Density	(g/cm ³)	1.27		
Composite Density	(g/cm ³)	1.59		
Fiber Areal Weight	(g/m ²)	145		
Fiber Volume	(%)	60	58 - 65	
Ply Thickness	(in)		0.0041 - 0.0059	

LAMINATE PROPERTY SUMMARY

* ALL	DOCUMENTATION	I PRESENTLY	REQUIRED W	AS NOT SUPP	LIED FOR THI	S MATERIAL.
MATERI	AL: AS4/	/3501-6 (bleed)	unidirectional	tape		Table 4.2.12(a)
FIBER V	CONTENT: 34-3 OLUME: 58-6 CKNESS: 0.00	C/Ep 145-UT AS4/3501-6 Tension, 1-axis [0] ₈ 75/A				
TEST M	ETHOD:	/ 5/A Interim				
AST	M D 3039-76					
NORMAI	LIZED BY: Spec	cimen thickness	and batch fibe	er volume to 60 ⁴	% (0.0053 in. C	PT)
	Content (%) um at T, RH	7 amb 2	vient			
Source C	JOUE	Normalized	Measured	Normalized	Measured	Normalized Measured
	Mean Minimum Maximum C.V.(%)	291 263 326 6.09	295 271 326 5.05		Medsured	Normalized Inicasured
F_1^{tu}	B-value Distribution	(1) Weibull	(1) Weibull			
(ksi)	C ₁ C ₂	300 18.4	302 20.3			
	No. Specimens No. Batches Data Class	2 7 Inte	7			
E_1^t	Mean Minimum Maximum C.V.(%)	19.6 18.0 21.1 3.73	19.9 18.3 22.6 6.48			
(Msi)	No. Specimens No. Batches Data Class	2 7 Inte	7			
v_{12}^{t}	Mean No. Specimens No. Batches					
	Data Class Mean Minimum Maximum C.V.(%)					
ε ^{tu} (με)	B-value Distribution C1					
(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	C ₂					
	No. Specimens No. Batches Data Class					

Volume 2, Chapter 4 Carbon Fiber Composites

MATERIAL: Table 4.2.12(b) AS4/3501-6 (bleed) unidirectional tape C/Ep 145-UT 1.60-1.61 g/cm³ AS4/3501-6 **RESIN CONTENT:** 28-29 wt% COMP: DENSITY: FIBER VOLUME: VOID CONTENT: Tension, 2-axis 63-64 % PLY THICKNESS: 0.0048-0.0057 in. **[90]**8 75/A TEST METHOD: MODULUS CALCULATION: Screening ASTM D 3039-76 NORMALIZED BY: Not normalized Temperature (°F) 75 Moisture Content (%) ambient Equilibrium at T, RH Source Code 26 Mean 7.78 Minimum 7.00 Maximum 9.50 C.V.(%) 12.1 **B**-value (1) F_2^{tu} Distribution Normal (ksi) C_1 7.78 C_2 0.941 No. Specimens 6 No. Batches 2 Data Class Screening Mean 1.48 Minimum 1.40 Maximum 1.50 C.V.(%) 2.75 E_2^t (Msi) No. Specimens 6 No. Batches 2 Data Class Screening Mean No. Specimens No. Batches v_{12}^{t} Data Class Mean Minimum Maximum C.V.(%) **B**-value $\varepsilon_2^{\mathrm{tu}}$ Distribution C_1 (µɛ) C_2 No. Specimens No. Batches Data Class

(1) Basis values are presented only for A and B data classes.

MIL-HDBK-17-2F Volume 2, Chapter 4 Carbon Fiber Composites

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

* ALL	DOCUMENTATION	I PRESENTLY	REQUIRED W	AS NOT SUPP	LIED FOR THI	<u>S MATERIAL.</u>		
FIBER V	AL: AS4/ CONTENT: 28-3- OLUME: 58-6- CKNESS: 0.004	8-1.61 g/cm ³	Table 4.2.12(c) C/Ep 145-UT AS4/3501-6 Compression, 1-axis [0] ₈ 75/A, 200/A, 75/W					
TEST METHOD: MODULUS CALCULATION: Interim, Screening								
		cimen thickness	s and batch fibe	er volume to 60	% (0.0053 in. C	PT)		
	Content (%) um at T, RH	amt	5 bient 6	amt	00 pient 26	7 w (1 2	et)	
		Normalized	Measured	Normalized	Measured	Normalized	Measured	
	Mean Minimum Maximum C.V.(%)	210 144 269 16.0	214 161 260 13.5	196 148 242 13.6	201 165 237 10.7	202 165 274 18.0	213 179 266 14.1	
F ₁ ^{cu}	B-value Distribution	(2) ANOVA	(2) ANOVA	(2) ANOVA	(2) ANOVA	(2) Weibull	(2) Weibull	
(ksi)	C ₁ C ₂	34.7 2.39	27.7 2.52	27.7 2.52	22.3 2.35	217 5.89	226 7.82	
	No. Specimens No. Batches Data Class	26 7 Interim			27 7 Interim		0 2 ening	
E ₁ ^c	Mean Minimum Maximum C.V.(%)	17.8 15.1 20.3 7.50	18.8 16.4 20.0 7.18	16.3 13.0 18.7 10.7	17.4 14.3 19.6 10.1	17.4 15.6 20.3 9.14	18.5 17.1 20.6 5.84	
(Msi)	No. Specimens No. Batches Data Class	:	4 3	15 3		10 2		
<i>v</i> ^c ₁₂	Mean No. Specimens No. Batches Data Class	5018	ening		ərim	Scree	still ly	
	Mean Minimum Maximum C.V.(%)							
ε_1^{cu}	B-value Distribution C1							
(με)	C ₂							
	No. Specimens No. Batches Data Class							

Volume 2, Chapter 4 Carbon Fiber Composites

* ALL	DOCUMENTATION	I PRESENTLY	REQUIRED W	AS NOT SUPP	LIED FOR THI	S MATERIAL.
MATERI		(3501-6 (bleed)				Table 4.2.12(d)
FIBER V	CONTENT: 28-3 OLUME: 58-6 CKNESS: 0.00	8-1.61 g/cm ³	C/Ep 145-UT AS4/3501-6 Compression, 1-axis [0] ₈ 200/W			
TEST M	ETHOD:		MODULUS	S CALCULATIO	DN:	Screening
SAC	CMA SRM 1-88					
NORMAI	LIZED BY: Spec	cimen thickness	and batch fibe	er volume to 60°	% (0.0053 in. C	PT)
	Content (%) um at T, RH	20 we	et			
		Normalized	Measured	Normalized	Measured	Normalized Measured
	Mean Minimum Maximum C.V.(%)	169 100 212 22.2	179 107 226 22.9			
F ₁ ^{cu}	B-value Distribution	(1) ANOVA	(1) ANOVA			
(ksi)	C ₁ C ₂	41.7 5.28	46.6 5.72			
	No. Specimens No. Batches Data Class	10 3 Scree	3			
E_1^c	Mean Minimum Maximum C.V.(%)	17.7 12.1 27.2 21.6	18.7 13.4 25.5 15.8			
(Msi)	No. Specimens No. Batches Data Class	10 3 Scree	3			
v_{12}^{c}	Mean No. Specimens No. Batches Data Class	30186	ann 19			
	Mean Minimum Maximum C.V.(%)					
$\varepsilon_1^{ m cu}$	B-value Distribution					
(με)	C ₁ C ₂					
	No. Specimens No. Batches Data Class					

Volume 2, Chapter 4 Carbon Fiber Composites

* ALL D	DOCUMENT	ATION PR	ESENTLY REQU	JIRED WERE NO	T SUPPLIED FOI	R THIS MATERI	AL.
MATERIA	L:	AS4/350	1-6 (bleed) unidir	ectional tape			le 4.2.12(e) Ep 145-UT
RESIN CO FIBER VC PLY THIC	LUME:	30-34 wt 58-62 % 0.0047-0	V	COMP: DENSITY: OID CONTENT:	1.58-1.60 g/cn	n ³ AS	54/3501-6 5, 31-plane [0] ₈ 200/A, 75/W,
TEST ME			Ν	IODULUS CALCI	ULATION:	S	200/W creening
ASTN	/I D 2344						
NORMALI	ZED BY:	Not norm	nalized				
Temperatu Moisture C Equilibriur	Content (%)		75 ambient	200 ambient	75 wet (1)	200 wet (1)	
Source Co			26	26	26	26	
	Mean Minimum Maximum C.V.(%)		17.3 14.1 19.4 7.63	13.0 11.1 14.9 11.6	13.9 13.1 15.5 6.13	9.0 8.3 10.1 6.4	
F ₃₁ ^{sbs}	B-value Distributic	on	(2) ANOVA	(2) ANOVA	(2) Normal	(2) Normal	
(ksi)	C_1 C_2		1.38 2.62	1.59 2.77	13.9 0.852	9.0 0.58	
	No. Speci No. Batch Data Clas	nes	21 7 Screening	21 7 Screening	6 2 Screening	9 3 Screening	

Volume 2, Chapter 4 Carbon Fiber Composites

MIL-HDBK-17-2F Volume 2, Chapter 4 Carbon Fiber Composites

MATER	RIAL: AS4	4/3501-6 (bleed)	unidirectional	tape		Table 4.2.12(f)
FIBER	VOLUME: 60-0	32 wt% 63 % 055-0.0062 in.	COMP: D VOID CO	C/Ep 145-UT AS4/3501-6 Tension, x-axis [0/45/90/-45] _s 75/A		
TEST N	METHOD:	FION:	Screening			
AS	STM D 3039-76		Linear	portion of cu	rve	
NORM	ALIZED BY: Nor			and batch fit	per area weight to	o 60% (0.0059 in. CPT)
Moistur	rature (°F) re Content (%) rium at T, RH Code	7: amb	ient			
000.00	0000	Normalized	Measured	Normalized	Measured	Normalized Measured
	Mean Minimum Maximum C.V.(%)	107 101 118 6.03	95.8 90.6 106 5.95			
F_{x}^{tu}	B-value Distribution	(1) ANOVA	(1) ANOVA			
(ksi)	C ₁ C ₂	7.51 15.5	29.9 14.5			
	No. Specimens No. Batches Data Class	6 2 Scree				
E_{x}^{t}	Mean Minimum Maximum C.V.(%)	8.08 7.39 9.41 9.75	7.22 6.60 8.40 9.74			
(Msi)	No. Specimens No. Batches Data Class	6 2 Scree				
$v_{\rm xy}^{\rm t}$	Mean No. Specimens No. Batches					
	Data Class Mean					
	Minimum Maximum C.V.(%)					
$\boldsymbol{\varepsilon}_{\mathrm{x}}^{\mathrm{tu}}$	B-value Distribution					
(με)	C ₁ C ₂					
	No. Specimens No. Batches Data Class					

MIL-HDBK-17-2F Volume 2, Chapter 4 Carbon Fiber Composites

MATERI	AL: AS	4/3501-6 (bleed	d) unidirection	al tape			4.2.12(g) 145-UT
		-32 wt% -63 %		DENSITY: 1. CONTENT:	59-1.60 g/cm ³	AS4 Open Ho	/3501-6 ble Tension,
PLY THI	CKNESS: 0.0	[0/45	x-axis [0/45/90/-45] _s 75/A				
TEST METHOD: MODULUS CALCULATION:							eening
SAC	CMA SRM 5-88 (1))					
NORMA	LIZED BY: No	rmalized by spe	ecimen thickne	ess and batch fib	er areal weight	t to 60% (0.0056	in. CPT)
Tempera	ature (°F)	75	5				
	Content (%)	amb	ient				
	um at T, RH		-				
Source (Jode	20 Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean	65.6	62.0	Normalized	เพียลอนเฮน	Normalized	weasureu
	Minimum	62.2	59.2				
	Maximum	69.0	65.1				
	C.V.(%)	3.42	3.13				
	B-value	(2)	(2)				
F _x ^{oht}	Distribution	(2) ANOVA	(2) Normal				
г _х (ksi)	C ₁	2.50	62.0				
(KSI)	C_2	12.8	1.94				
	No. Specimens	6	5				
	No. Batches	6	2				
	Data Class	Scree	ening				
	Mean						
	Minimum Maximum						
E_{x}^{oht}	C.V.(%)						
(Msi)	No. Specimens						
	No. Batches						
	Data Class						
	Mean						
	Minimum Maximum						
	C.V.(%)						
	B-value						
$\varepsilon_{\mathrm{x}}^{\mathrm{oht}}$	Distribution						
(με)	C ₁						
	C ₂						
	No. Specimens						
	No. Batches						
	Data Class						

Note SACMA SRM 5-88 uses a [+45/0/-45/90]_{2S} lay-up.
 Basis values are presented only for A and B data classes.

4.2.13 AS4/3501-6 (no bleed) unidirectional tape

Material Description:

Material: AS4/3501-6

Form: Unidirectional tape, fiber areal weight of 145 g/m², typical cured resin content of 36%-39%, typical cured ply thickness of 0.0055-0.0063 inches.

Processing: Autoclave cure; 240°F, 85 psi for 1 hour; 350°F, 100 psi for 2 hours, no bleed.

General Supplier Information:

- Fiber: AS4 fibers are continuous carbon filaments made from PAN precursor, surface treated to improve handling characteristics and structural properties. Typical tensile modulus is 34 x 10⁶ psi. Typical tensile strength is 550,000 psi.
- Matrix: 3501-6 is an amine-cured epoxy resin. It will retain light tack for a minimum of 10 days at room temperature.

Maximum Short Term Service Temperature: 300°F (dry), 180°F (wet)

Typical applications: General purpose structural applications.

4.2.13 AS4/3501-6 (no bleed) unidirectional tape*

MATERIAL:	AS4/3501-	AS4/3501-6 unidirectional tape					
FORM:	Hercules A	S4/3501-6 unidire	ctional tape prepreg	-			
FIBER:	Hercules A	S4, unsized	MATRIX:	Hercules 3501-6			
T _g (dry):	390°F	T _g (wet):	T _g METHOD:	ТМА			
PROCESSING:		cure: 240 ± 10°F, sig; no bleed	60 minutes; 85 psig; 350 ± 10	0°F, 120 ± 10 minutes	,		

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

Date of fiber manufacture	~12/82-8/89	Date of testing	~6/83 - ~4/91
Date of resin manufacture		Date of data submittal	6/90
Date of prepreg manufacture	1/83 - 11/89	Date of analysis	1/93
Date of composite manufacture			

LAMINA PROPERTY SUMMARY

	75°F/A	-65°F/A	200°F/A	200°F/W	
Tension, 1-axis	II	SS	SS		
Tension, 2-axis	SS				
Tension, 3-axis					
Compression, 1-axis	II		I	II	
Compression, 2-axis					
Compression, 3-axis					
Shear, 12-plane					
Shear, 23-plane					
Shear, 31-plane					
SB Strength, 31-plane	S		S		

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.8		
Resin Density	(g/cm ³)	1.27		
Composite Density	(g/cm ³)	1.59		
Fiber Areal Weight	(g/m ²)	145	142 - 149	
Fiber Volume	(%)	60	52 - 60	
Ply Thickness	(in)		0.0055 - 0.0063	

LAMINATE PROPERTY SUMMARY

	75°F/A				
[0/45/90/-45] family					
Tension, x-axis	S S				
OHT, x-axis	S				

* ALL	DOCUMENTATION	I PRESENTLY I	REQUIRED W	ERE NOT SUP	PLIED FOR TH	IIS MATERIAL.	
MATERIA	AL: AS4,	/3501-6 (no blee	ed) unidirectior	nal tape			.2.13(a) 45-UT
FIBER VO		-56 % VOID CONTENT: Tension, 1-axis 0055-0.0060 in. [0]₃					
	0.00	55-0.0000 m.				75/A, -65	/A, 200/A
TEST ME				S CALCULATIO	N:	Interim, S	Screening
AST	M D 3039-76		Initial	tangent			
NORMAL	IZED BY: Spec	cimen thickness	and batch fibe	er volume to 60%	6 (0.0053 in. C	PT)	
Temperat		75		-6		20 amb	
	Content (%) m at T, RH	amb	lent	amb	ient	amb	lent
Source C		26		20		26	-
	Mean	Normalized 290	Measured 262	Normalized 261	Measured 237	Normalized 315	Measured 286
	Minimum	262	235	207	187	278	247
	Maximum	322	286	300	274	330	297
	C.V.(%)	5.62	5.38	12.4	12.8	4.89	5.59
F_1^{tu}	B-value Distribution	(1) ANOVA	(1) ANOVA	(1) ANOVA	(1) ANOVA	(1) Nonpara.	(1) Nonpara.
(ksi)	C ₁	16.5	14.3	34.9	33.1	6	6
	C ₂	2.05	2.01	4.69	5.05	2.25	2.25
	No. Specimens	30		9		9	
	No. Batches Data Class	10 Interim		3 Scree		3 Scree	
	Mean	18.9	17.1	21.1	19.2	20.8	18.9
	Minimum	17.0	15.5	19.7	17.7	19.4	17.4
\mathbf{E}_{1}^{t}	Maximum C.V.(%)	20.3 4.0	17.9 3.20	22.3 4.60	21.4 5.78	22.0 4.72	20.2 4.70
L		_					-
(Msi)	No. Specimens	30		9		9 3	
	No. Batches Data Class	10 Inte			3 Screening		ning
	Mean				Ŭ.		
v_{12}^{t}	No. Specimens No. Batches						
	Data Class						
	Mean Minimum						
	Maximum						
	C.V.(%)						
$arepsilon_1^{ ext{tu}}$	B-value Distribution						
(με)	C ₁						
(pic)	C ₂						
	No. Specimens						
	No. Batches Data Class						
1		1		1			

	L DOCUMENTATION				IPPLIED FOR TH				
MATER	RIAL: AS4	/3501-6 (no blee	d) unidirection	al tape			1.2.13(b)		
		40/			$\Gamma C = (am^3)$		145-UT		
	CONTENT: 37 w		COMP: DENSITY: 1.56 g/cm ³ AS4/3501-6						
	VOLUME: 54-5 IICKNESS: 0.00	5 % 160-0.0062 in.	VOID CONTENT: Tension, 2-axis [90]8						
	IICRNE33. 0.00	00-0.0002 III.					5/A		
TEST	IETHOD:			S CALCULAT			ening		
	STM D 3039-76			angent			g		
	51WD 3039-70		muan	angen					
NORM	ALIZED BY: Not	normalized							
Temper	rature (°F)	75							
	e Content (%)	ambient							
	ium at T, RH								
Source		26							
	Mean Minimum	8.0 6.8							
	Maximum	9.3							
	C.V.(%)	10							
	B-value	(1)							
F_2^{tu}	Distribution	Normal							
(ksi)	C ₁	8.0							
()	C ₂	0.81							
	_								
	No. Specimens	9							
	No. Batches	3							
	Data Class	Screening							
	Mean Minimum	1.2 1.1							
	Maximum	1.4							
E_2^t	C.V.(%)	8.9							
L ₂									
(Msi)	No. Specimens	9							
	No. Batches	3							
	Data Class	Screening							
	Mean	Ĭ							
	No. Specimens								
v_{21}^{t}	No. Batches								
21	Data Class								
	Mean								
	Minimum								
	Maximum								
	C.V.(%)								
	B-value								
ctu	Distribution								
ε_2^{tu}									
(με)	C ₁								
	C ₂								
	No. Specimens								
	No. Batches								
	Data Class								
L					1				

* ALL	DOCUMENTATION	PRESENTLY	REQUIRED W	ERE NOT SUP	PLIED FOR TH	IS MATERIAL.	
MATERIA	AL: AS4/	/3501-6 (no blee	ed) unidirection	nal tape			.2.13(c)
FIBER V	OLUME: 52-5	9 wt% 6 % 56-0.0060 in.	COMP: DE VOID CON		5-1.57 g/cm ³	AS4/3 Compress	45-UT 501-6 ion, 1-axis]₀
		00 0.0000				75/A, 200	Ū/A, 20/W
TEST ME				S CALCULATIO	N:	Inte	erim
SAC	MA SRM 1-88		Initial	tangent			
NORMAL	IZED BY: Spec			er volume to 60%	6 (0.0053 in. C	PT)	
Tempera	ture (°F) Content (%)	75 amb		20 amb		20	
	im at T, RH	and	lent	amp	lent	we (1	
Source C		20		26		26	6
	Maan	Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean Minimum	233 200	211 186	213 174	193 157	191 142	173 128
	Maximum	260	234	267	243	220	201
	C.V.(%)	6.39	6.16	9.74	10.0	11.0	11.4
F ₁ ^{cu}	B-value Distribution	(2) ANOVA	(2) ANOVA	(2) ANOVA	(2) ANOVA	(2) ANOVA	(2) ANOVA
(ksi)	C ₁	15.2	13.4	21.0	19.6	22.4	21.1
	C ₂	2.21	2.23	2.00	2.03	4.17	4.25
	No. Specimens	30		30		15	
	No. Batches	8 Interim		10		3 Inter	
	Data Class Mean	18.8	17.0	Inte		18.3	16.6
	Minimum	17.9	16.2			17.5	15.7
- 0	Maximum	19.7 3.21	17.8			19.1	17.3
E_1^c	C.V.(%)	3.21	3.53			2.62	3.16
(Msi)	No. Specimens	1:				15	
	No. Batches Data Class	3 Inte				3 Inter	
	Mean						
v_{12}^{c}	No. Specimens No. Batches						
	Data Class						
	Mean Minimum						
	Maximum						
	C.V.(%)						
$\varepsilon_1^{ m cu}$	B-value Distribution						
με)	C ₁						
(με)	C_2						
	No. Specimens No. Batches Data Class						
	Data Ciass						

(1) Conditioned at 140°F, 95% relative humidity for 30 days.

		ON PRESENTLY REQ		T SUPPLIED FOR	
MATERIA	L: AS	64/3501-6 (no bleed) u	nidirectional tape		Table 4.2.13(d)
RESIN CC FIBER VO PLY THIC	LUME: 52		COMP: DENSITY: VOID CONTENT:	1.55-1.57 g/cm ³	C/Ep 145-UT AS4/3501-6 SBS, 31-plane [0] ₈
					75/A, 200/A
TEST MET			MODULUS CALCU	JLATION:	Screening
ASTIV	I D 2344-76		Initial tangent		
NORMALI	ZED BY: No	ot normalized			
Temperatu		75	200		
Moisture C Equilibrium	Content (%)	ambient	ambient		
Source Co		26	26		
	Mean	17.9	14.0		
	Minimum	16.5	12.9		
		19.0	15.4		
	C.V.(%)	4.46	4.73		
	B-value	(1)	(1)		
F ₃₁ ^{sbs}	Distribution	ANOVA	ANOVA		
(ksi)	C ₁	0.824	0.683		
	C ₂	2.36	2.34		
	No. Specimer	ns 30	30		
	No. Batches	8	10		
	Data Class	Screening	Screening		

(1) Short beam strength test data are approved for Screening Data Class only.

MIL-HDBK-17-2F Volume 2, Chapter 4 Carbon Fiber Composites

MATER	RIAL: AS4	/3501-6 (no blee	d) unidirectional	tape		Table (4.2.13(e) 145-UT
FIBER	VOLUME: 54-8	87 wt% 56 % 957-0.0062 in.	COMP: DEN VOID CONT		AS4/3501-6 Tension, x-axis [0/45/90/-45] _S 75/A		
	METHOD: STM D 3039-76		MODULUS	CALCULATI	ON:		ening
NORM	ALIZED BY: NA						
Moistur	rature (°F) re Content (%) rium at T, RH	75 ambient					
Source		26					
	Mean Minimum Maximum C.V.(%)	87.4 83.2 92.8 3.43					
F _x ^{tu}	B-value Distribution	(1) Normal					
(ksi)	C ₁ C ₂	87.4 3.00					
	No. Specimens No. Batches Data Class	9 3 Screening					
E _x ^t	Mean Minimum Maximum C.V.(%)						
(Msi)	No. Specimens No. Batches Data Class						
$v_{\rm xy}^{\rm t}$	Mean No. Specimens No. Batches						
J	Data Class						
	Mean Minimum Maximum C.V.(%)						
$\boldsymbol{\varepsilon}_{\mathrm{x}}^{\mathrm{tu}}$	B-value Distribution						
(με)	C ₁ C ₂						
	No. Specimens No. Batches Data Class						

MIL-HDBK-17-2F Volume 2, Chapter 4 Carbon Fiber Composites

MATER	RIAL:	AS4/3501-6 (no ble	ed) unidirection	al tape			4.2.13(f)
		36-37 wt% 54-56 %	COMP: D VOID COI		56-1.57 g/cm ³	AS4/ Open Ho	145-UT 3501-6 le Tension,
PLY TH	HICKNESS:	0.0060-0.0064 in		[0/45/	axis 90/-45] _s 5/A		
TEST	METHOD:		MODULU	S CALCULAT	ION:		ening
SA	ACMA SRM 5-88	(1)					
NORM	ALIZED BY:	NA					
	rature (°F)	75					
	re Content (%)	ambient					
Source	rium at T, RH	26					
Cource	Mean	56.8					
	Minimum	54.4					
	Maximum	60.8					
	C.V.(%)	3.75					
	B-value	(2)					
F _x ^{oht}	Distribution	Normal					
(ksi)	C ₁	56.8					
	C ₂	2.13					
	No. Specimens	9					
	No. Batches	3					
	Data Class Mean	Screening					
	Minimum						
	Maximum						
E_x^{oht}	C.V.(%)						
	No. Chasimona						
(Msi)	No. Specimens No. Batches						
	Data Class						
	Mean						
t	No. Specimens No. Batches	5					
$v_{\rm xy}^{\rm t}$							
	Data Class Mean						
	Minimum						
	Maximum						
	C.V.(%)						
	B-value						
$\varepsilon_{\rm x}^{\rm oht}$	Distribution						
(με)	C ₁						
	C ₂						
	No. Specimens	,					
	No. Batches						
	Data Class						

Note SACMA SRM 5-88 uses a [45/0/-45/90]_{2S} lay-up.
 Basis values are presented only for A and B data classes.

4.2.14 AS4 3k/3501-6 plain weave fabric

Material Description:

Material: AS4-3k/3501-6

Form: Plain weave fabric, areal weight of 193 g/m², typical cured resin content of 37-41%, typical cured ply thickness of 0.0074-0.0086 inches.

Processing: Autoclave cure; 240°F, 85 psi for 1 hour; 350°F, 100 psi for 2 hours, no bleed.

General Supplier Information:

- Fiber: AS4 fibers are continuous carbon filaments made from PAN precursor, surface treated to improve handling characteristics and structural properties. Filament count is 3000 filaments/tow. Typical tensile modulus is 34 x 10⁶ psi. Typical tensile strength is 550,000 psi.
- Matrix: 3501-6 is an amine-cured epoxy resin. It will retain light tack for a minimum of 10 days at room temperature.

Maximum Short Term Service Temperature: 300°F (dry), 180°F (wet)

Typical applications: General purpose structural applications.

4.2.14 AS4 3k/3501-6 plain weave*

MATERIAL:	AS4 3k/3501-6 plain weave fabric			C/Ep 193-PW AS4/3501-6 Summary
FORM:	Hercules AW193P plain weave fabric	prepreg	-	
FIBER:	Hercules AS4 3k W	MATRIX:	Hercules 3501-6	
T _g (dry):	T _g (wet):	Tg METHOD:		
PROCESSING:	Autoclave cure: $240 \pm 10^{\circ}$ F, 60 minute 100 ± 10 psig, no bleed	es, 85 psig; 350 ± 1	0°F, 120 ± 10 minutes	,

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

Date of fiber manufacture	Date of testing	
Date of resin manufacture	Date of data submittal	6/88
Date of prepreg manufacture	Date of analysis	1/93
Date of composite manufacture		

LAMINA PROPERTY SUMMARY

	75°F/A	-65°A/F	200°F/A	75°F/W	200°F/W	
Tension, 1-axis	SS	SS	SS			
Tension, 2-axis						
Tension, 3-axis						
Compression, 1-axis	II		II	II	II	
Compression, 2-axis						
Compression, 3-axis						
Shear, 12-plane						
Shear, 23-plane						
Shear, 31-plane						
SB Strength, 31-plane	S		S	S	S	

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.80		
Resin Density	(g/cm ³)	1.28		
Composite Density	(g/cm ³)	1.58	1.54 - 1.56	
Fiber Areal Weight	(g/m ²)	193	193	
Fiber Volume	(%)	58	51 - 54	
Ply Thickness	(in)	0.0070	0.0074 - 0.0086	

LAMINATE PROPERTY SUMMARY

	75°F/A				
[0t/90t/±45t] Family					
Tension, x-axis	SS				
[±45 _f /0 _f /90 _f] Family					
OHT, x-axis	S				

MATERIA	AL: AS4	3k/3501-6 plair	n weave fabric				4.2.14(a)
FIBER V			COMP: DE VOID CON		6 g/cm ³	AS4/ Tensio	193-PW 3501-6 n, 1-axis 0 _[] ₈
TEST ME	THOD:		MODULUS	75/A, -6	75/A, -65/A, 200/A Screening		
	M D 3039-76		mobolot		, sinning		
		cimen thickness	s and batch fibe	er volume to 579	% (0.0074 in. C	PT)	
	ture (°F) Content (%) ım at T, RH		5 bient		65 pient		00 bient
Source C		2	6	2	26	2	:6
		Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean	124	117	112	105	126	119
	Minimum	117	111	103	98.1	116	108
	Maximum	133	124	120	112	133	126
	C.V.(%)	4.18	3.56	4.63	4.00	4.79	5.88
F ₁ ^{tu}	B-value Distribution	(2) Normal	(2) Normal	(2) Normal	(2) Normal	(2) Normal	(2) Normal
(ksi)	C ₁	124	117	112	105	126	119
~ ,	C ₂	5.17	4.15	5.17	4.21	6.05	7.00
	No. Specimens No. Batches	9 3 Screening		:	9 3 _.	:	9 3
	Data Class			10.5	ening		ening
	Mean Minimum	9.8 9.4	9.2 8.8	9.7	9.9 9.1	10.1 7.1	9.5 6.7
	Maximum	10.2	9.5	11.1	10.4	10.7	10.1
E_1^t	C.V.(%)	3,0	2.5	4.6	4.2	11	11
(Msi)	No. Specimens		9 3		9 3		9
	No. Batches Data Class	3 Screening			s ening	3 Screening	
	Mean		eg		og		eg
v_{12}^{t}	No. Specimens No. Batches						
	Data Class						
	Mean						
	Minimum Maximum						
	C.V.(%)						
$arepsilon_1^{ ext{tu}}$	B-value Distribution						
(με)	C ₁						
(με)	C_2						
	No. Specimens No. Batches						
	Data Class						

MATERI	AL: AS4	4 3k/3501-6 plair	n weave fabric				4.2.14(b)
FIBER V	OLUME: 51-4 CKNESS: 0.00	41 wt% 52 % 081-0.0086 in.	COMP: DE VOID CON	Compress [0 75/A, 20	AS4/3501-6 Compression, 1-axis [0 _f] ₁₄ 75/A, 200/A, 75/W Interim		
	MA SRM 1-88		MODULU	S CALCULATIC	JN.	Int	erim
		cimen thickness	and batch fibe	er volume to 57	% (0.0074 in. C	PT)	
	Content (%) Im at T, RH	7 amt 2	pient	amt	00 pient 26	(*	et
		Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean Minimum Maximum C.V.(%)	130 115 140 6.45	117 104 127 6.49	108 92.8 121 7.44	97.3 83.0 109 7.71	112 99.6 122 5.56	101 88.0 109 5.65
F ₁ ^{cu}	B-value Distribution	(2) Nonpara.	(2) Nonpara.	(2) Weibull	(2) Normal	(2) ANOVA	(2) ANOVA
(ksi)	$\begin{array}{c} C_1 \\ C_2 \end{array}$	8 1.54	8 1.54	112 15.1	97.3 7.51	6.83 4.85	6.32 5.09
	No. Specimens No. Batches Data Class	15 3 Interim		:	5 3 erim	15 3 Interim	
E_1^c	Mean Minimum Maximum C.V.(%)	9.2 8.5 9.8 3.4	8.3 7.7 8.8 4.3	9.8 9.2 10.2 3.5	8.8 8.4 9.1 2.5	9.4 8.8 9.9 3.0	8.4 8.1 8.8 2.4
(Msi)	No. Specimens No. Batches Data Class		5 3 erim	:	5 3 erim	15 3 Interim	
v_{12}^{c}	Mean No. Specimens No. Batches						
	Data Class Mean Minimum Maximum C.V.(%)						
ε_1^{cu}	B-value Distribution						
(με)	C ₁ C ₂						
	No. Specimens No. Batches Data Class						

MATERIA	AL: AS4	3k/3501-6 plain	weave fabric				Table 4.2.14(c)
FIBER V	OLUME: 51-5	41 wt% COMP: DENSITY: 1.54-1.55 g/cm ³ 52 % VOID CONTENT: 081-0.0086 in.				C/Ep 193-PW AS4/3501-6 Compression, 1-axis [0 _f] ₁₄	
TEST ME	THOD:		MODULUS	S CALCUL	ΑΤΙΟΙ	N:	200/W Interim
	MA SRM 1-88		11020200				
	-	cimen thickness		er volume t	to 57%	6 (0.0074 in. C	PT)
Tempera	ture (°F) Content (%)	20 (1					
	im at T, RH	We we					
Source C		20			<u> </u>		
		Normalized	Measured	Normali	zed	Measured	Normalized Measured
	Mean Minimum Maximum C.V.(%)	58.7 51.7 65.4 7.27	52.7 46.2 59.7 7.58				
F ₁ ^{cu}	B-value Distribution	(2) Weibull	(2) Weibull				
(ksi)	C_1 C_2	60.6 15.6	54.5 15.2				
	No. Specimens No. Batches Data Class	3	15 3 Interim				
E ₁ ^c	Mean Minimum Maximum C.V.(%)	9.1 8.7 9.4 2.4	8.1 7.8 8.5 2.9				
(Msi)	No. Specimens No. Batches Data Class	1 3 Inte	5				
<i>v</i> ^c ₁₂	Mean No. Specimens No. Batches						
	Data Class Mean Minimum Maximum C.V.(%)						
$\varepsilon_1^{ m cu}$	B-value Distribution						
(με)	C ₁ C ₂						
	No. Specimens No. Batches Data Class						

MATERIAL		AS4 3k/3	501-6 plain weav	ve fabric			le 4.2.14(d)				
RESIN CO FIBER VO PLY THICH	LUME:	39-41 wt ⁶ 51-52 % 0.0077-0	١	COMP: DENSITY: /OID CONTENT:	1.54-1.55 g/cm	³ AS SBS	p 193-PW 64/3501-6 6, 31-plane [0 _f] ₁₄ 200/A, 75/W, 200/W				
TEST MET ASTM	"HOD: I D 2344		ſ	MODULUS CALCI	JLATION:	S	200/W creening				
NORMALIZ	NORMALIZED BY: Not normalized										
Temperatu Moisture C	ontent (%)		75 ambient	200 ambient	75 wet	200 wet					
Equilibrium Source Co	de		26	26	(1) 26	(1) 26					
	Mean Minimum Maximum C.V.(%)		10.9 9.7 11.9 6.09	8.4 8.1 8.8 2.5	10.9 10.0 11.4 3.47	5.3 5.2 5.5 2.3					
F ₃₁ ^{sbs}	B-value Distributic	n	(2) Weibull	(2) Normal	(2) Weibull	(2) Nonpara.					
(ksi)	C ₁ C ₂		11.2 20.1	8.4 0.21	11.0 35.4	7 1.81					
	No. Speci No. Batch	es	15 3	9 3	15 3	12 3					
	Data Clas	S	Screening	Screening	Screening	Screening					

MIL-HDBK-17-2F Volume 2, Chapter 4 Carbon Fiber Composites

MATERI	AL: AS4	3k/3501-6 plair	weave fabric				4.2.14(e) 193-PW
FIBER V	OLUME: 53-5	8 wt% 4 % 80-0.0085 in.	COMP: D VOID CO	AS4/ Tensio [0 _f /90 _f	AS4/3501-6 Tension, x-axis [0 _f /90 _f /±45 _f] ₂₈ 75/A		
TEST ME	ETHOD:		MODULU	S CALCULATIC	DN:	Scre	ening
AST	M D 3039-76						
NORMAI	LIZED BY: Norn			and batch fiber	areal weight t	o 60% (0.0083	in. CPT)
Equilibriu	Content (%) um at T, RH	7 amb	ient				
Source C	Code	2					
	N.4	Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean Minimum Maximum C.V.(%)	76.0 68.8 83.4 7.6	68.5 62.0 75.1 7.60				
F ^{tu} (ksi)	B-value Distribution C ₁ C ₂	(1) Normal 76.0 5.78	(1) Normal 68.5 5.21				
	No. Specimens No. Batches Data Class	Scree	3				
E_x^t	Mean Minimum Maximum C.V.(%)	6.7 6.2 6.9 3.5	6.0 5.6 6.3 3.6				
(Msi)	No. Specimens No. Batches Data Class	s Scree	3				
$v_{\mathrm{xy}}^{\mathrm{t}}$	Mean No. Specimens No. Batches Data Class		~				
	Mean Minimum Maximum C.V.(%)						
$\varepsilon_{\rm x}^{\rm tu}$	B-value Distribution						
(με)	C ₁ C ₂						
	No. Specimens No. Batches Data Class						

MIL-HDBK-17-2F Volume 2, Chapter 4 Carbon Fiber Composites

MATERI	AL: AS4	3k/3501-6 plain	weave fabric			Table 4.2.14(f) C/Ep 193-PW		
RESIN C FIBER V		8 wt% 4 %	COMP: D VOID CO		AS4/3501-6 Open Hole Tension,			
PLY THI	CKNESS: 0.00	80-0.0085 in.				x-axis [±45 _f /0 _f /90 _f] _{2S} 75/A		
TEST MI SAC	ETHOD: CMA SRM 5-88 (1)		MODULU	IS CALCULATIO	DN:	Screening		
NORMAI	LIZED BY: Norr	nalized by speci	men thickness	s and batch fiber	areal weight t	o 60% (0.0083 in. CPT)		
		Normalized	Measured	Normalized	Measured	Normalized Measured		
	Mean	57.0	51.4					
	Minimum	54.0	48.6					
	Maximum	59.7 3.4	53.8 3.40					
	C.V.(%)	3.4	3.40					
roht	B-value	(2)	(2)					
F_{x}^{oht}	Distribution	ANOVA	ANOVA					
(ksi)	C ₁	2.12	2.46					
	C ₂	5.15	1.20					
	No. Specimens No. Batches	9						
	Data Class	Scree						
	Mean		5					
	Minimum							
$\mathbf{E}_{\mathbf{x}}^{t}$	Maximum							
л	C.V.(%)							
(Msi)	No. Specimens							
	No. Batches							
	Data Class							
	Mean Minimum							
	Maximum							
	C.V.(%)							
fu	B-value							
$\varepsilon_{\mathrm{x}}^{\mathrm{tu}}$	Distribution							
(με)	C ₁							
(1)	C ₂							
	No. Specimens							
	No. Batches							
	Data Class							

Note SACMA SRM 5-88 uses a [45/0/-45/90]_S lay-up.
 Basis values are presented only for A and B data classes.

4.2.15 AS4 3k/3501-6S 5-harness satin weave fabric

Material Description:

Material: AS4-3k/3501-6S

Form: 5-harness satin weave fabric, areal weight of 280 g/m², typical cured resin content of 33-35%, typical cured ply thickness of 0.0106 -0.0107 inches.

Processing: Autoclave cure; 240°F, 85 psi for 1 hour, 350°F, 100 psi for 2 hours, no bleed.

General Supplier Information:

- Fiber: AS4 fibers are continuous carbon filaments made from PAN precursor, surface treated to improve handling characteristics and structural properties. Filament count is 3000 filaments/tow. Typical tensile modulus is 34 x 10⁶ psi. Typical tensile strength is 550,000 psi.
- Matrix: 3501-6S is an amine-cured epoxy resin. This resin is a solvated material. It results in a more drapeable prepreg for use on highly complex parts. This resin is also amenable to cocuring. The hot/wet strengths are slightly lower than the non-solvated resin. It will retain light tack for a minimum of 10 days at room temperature.

Maximum Short Term Service Temperature: 300°F (dry), 180°F (wet)

Typical Applications: General purpose structural applications.

Volume 2, Chapter 4 Carbon Fiber Composites

4.2.15 AS4 3k/3501-6S 5-harness satin weave fabric*

MATERIAL:	AS4 3k/3501-6S 5-harness satin wea	ave fabric		C/Ep 280-5HS AS4/3501-6S Summary
FORM:	Hercules AW280 5-harness satin we			
FIBER:	Hercules AS4 3k W	MATRIX:	Hercules 3501-6S	
T _g (dry):	T _g (wet):	T _g METHOD:		
PROCESSING:	Autoclave cure: $240 \pm 10^{\circ}$ F, 60 minu 100 ± 10 psig, no bleed	3		

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

Date of fiber manufacture	Date of testing	
Date of resin manufacture	Date of data submittal	6/88
Date of prepreg manufacture	Date of analysis	1/93
Date of composite manufacture		

LAMINA PROPERTY SUMMARY

	75°F/A	200°F/A			
Tension, 1-axis	II				
Tension, 2-axis					
Tension, 3-axis					
Compression, 1-axis	I	I			
Compression, 2-axis					
Compression, 3-axis					
Shear, 12-plane					
Shear, 23-plane					
Shear, 31-plane					
SB Strength, 31-plane	S	S			

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.80		
Resin Density	(g/cm ³)	1.28		
Composite Density	(g/cm ³)	1.58	1.58 - 1.59	
Fiber Areal Weight	(g/m ²)	280	279 - 284	
Fiber Volume	(%)	58	57 - 60	
Ply Thickness	(in)		0.0106 - 0.0107	

LAMINATE PROPERTY SUMMARY

MATERI	AL: AS4	3k/3501-6S 5-ha	arness satin v	veave fab	ric		Table 4.2.15(a) C/Ep 280-5HS				
FIBER V	OLUME: 57-6	35 wt% COMP: DENSITY: 1.5 60 % VOID CONTENT: 106-0.0107 in.			1.58	-1.59 g/cm ³	AS4/3501-6S Tension, 1-axis [0₁]₀ 75/A				
TEST ME	ETHOD:	Interim									
AST	ASTM D 3039-76										
	NORMALIZED BY: Specimen thickness and batch fiber volume to 57% (0.0107 in. CPT)										
	Content (%) um at T, RH	75 ambio 26									
Source C		Normalized	Measured	Normali	zed	Measured	Normalized Measured				
	Mean Minimum Maximum C.V.(%)	112 97.6 123 5.78	115 100 126 5.55								
F_1^{tu}	B-value Distribution	(1) ANOVA	(1) ANOVA								
(ksi)	C ₁ C ₂	6.63 2.26	6.55 2.25								
	No. Specimens No. Batches Data Class	30 10 Inter	im								
E_1^t	Mean Minimum Maximum C.V.(%)	9.73 8.93 10.1 2.48	10.0 9.20 10.3 2.31								
(Msi)	No. Specimens No. Batches Data Class	30 10 Inter									
v ₁₂ ^t	Mean No. Specimens No. Batches										
	Data Class Mean Minimum Maximum C.V.(%)										
$arepsilon_1^{ ext{tu}}$	B-value Distribution										
(με)	C ₁ C ₂										
	No. Specimens No. Batches Data Class										

MATERI	AL: A	Table 4.2.15(b) C/Ep 280-5HS						
FIBER V	SIN CONTENT: 33-35 wt% COMP: DENSITY: 1.58-1.59 g/cm ³ ER VOLUME: 57-60 % VOID CONTENT: 'THICKNESS: 0.0106-0.0107 in.				AS4/3501-6S Compression, 1-axis [0 _f] ₆			
			MODULU		N 1.	75/A, 200/A Interim		
TEST ME			MODULU	S CALCULATIO	N:	Int	erim	
SAC	MA SRM 1-88							
NORMAI	LIZED BY: S	Specimen thickness	and batch fibe	er volume to 57%	% (0.0107 in. C	PT)		
Tempera	ture (°F)	7		20				
	Content (%)	amb	pient	amb	ient			
	im at T, RH	2	6	20	2			
Source C	Jode	 Normalized	Measured	20 Normalized	Measured	Normalized	Measured	
	Mean	124	128	110	113	Normalizeu	Measured	
	Minimum	108	111	96.1	99.0			
	Maximum	144	148	122	125			
	C.V.(%)	6.73	6.74	6.31	6.24			
	B-value	(1)	(1)	(1)	(1)			
F_1^{cu}	Distribution	Weibull	Weibull	ANOVA	ANOVA			
(ksi)	C ₁	128	132	7.04	7.15			
	C ₂	15.4	15.3	2.10	2.09			
	N 0 ·		•		-			
No. Specimens			30		0			
	No. Batches		10 Interim) rim			
	Data Class Mean	Inte		Inte	11111			
	Minimum							
	Maximum							
E_1^c	C.V.(%)							
\mathbf{L}_{1}								
(Msi)	No. Specime	ns						
(10131)	No. Batches							
	Data Class							
	Mean							
	No. Specimer	ns						
v_{12}^{c}	No. Batches							
12	Data Class							
	Mean							
	Minimum							
	Maximum							
	C.V.(%)							
	D volue							
cu	B-value Distribution							
ε_1^{cu}								
(με)	C_1							
	C ₂							
	No. Specime	ns						
	No. Batches							

(1) Basis values are presented only for A and B data classes.

Data Class

* ALL DOCUMENT	FATION PR	ESENTLY REQU	IIRED WERE NO	T SUPPLIED FO	R THIS MATERIAL.
MATERIAL:	AS4 3k/3	501-6S 5-harnes	s satin weave fab	ric	Table 4.2.15(c)
RESIN CONTENT: 33-35 wt% COMP: DENSITY: 1.58-1.59 FIBER VOLUME: 57-60 % VOID CONTENT: PLY THICKNESS: 0.0106-0.0107 in. VOID CONTENT:					C/Ep 280-5HS AS4/3501-6S SBS, 31-plane [0ք]و
	0.0100 0				75/A, 200/A
TEST METHOD:		Ν	IODULUS CALCI	JLATION:	Screening
ASTM D 2344					
NORMALIZED BY:	Not norm	alized			
Temperature (°F)		75	200		
Moisture Content (%)		ambient	ambient		
Equilibrium at T, RH		26	26		
Source Code Mean		26 11.0	26 9.53		
Minimum	1	9.00	8.40		
Maximun		13.2	10.8		
C.V.(%)		10.8	6.70		
D 1					
B-value E ^{sbs} Distributi	on	(1) ANOVA	(1) ANOVA		
131	on				
(ksi) C ₁ C ₂		1.22 2.18	0.66 2.32		
C_2		2.10	2.32		
No. Spec	cimens	30	30		
No. Batc		10	10		
Data Cla	SS	Screening	Screening		

(1) Short beam strength test data are approved for Screening Data Class only.

4.2.16 AS4 6k/3502-6S 5-harness satin weave fabric

Material Description:

Material: AS4-6k/3502-6S

- Form: 5 harness satin weave fabric, fiber areal weight of 365 g/m², typical cured resin content of 56-57%, typical cured ply thickness of 0.0142-0.0157 inches.
- Processing: Autoclave cure; 275°F, 85 psi for 45 minutes; 350°F, 85 psi, hold for two hours. Post cure at 400°F to develop optimum 350°F properties.

General Supplier Information:

- Fiber: AS4 fibers are continuous high strength, high strain, standard modulus carbon filaments made from PAN precursor. The fibers are surface treated to improve handling character-istics and structural properties. Filament count is 6,000 filaments/tow. Typical tensile modulus is 34 x 10⁶ psi. Typical tensile strength is 550,000 psi.
- Matrix: 3502 is an epoxy resin. This is a solvated resin formulated to improve drapeability over complex shapes. The hot/wet strengths will be slightly lower than the non-solvated resin. Good tack up to 10 days out-time at ambient temperature.

Maximum Short Term Service Temperature: 350°F (dry), 180°F (wet)

Typical applications: Primary and secondary structural applications on commercial and military aircraft.

Data Analysis Summary:

1. Only normalized data were made available for analysis.

4.2.16 AS4 6k/3502-6S 5-harness satin weave fabric*

Date of composite manufacture

MATERIAL:	AS4 6k/35	AS4 6k/3502 5-harness satin weave fabric							
FORM:	Hercules A	370-5H/3502	, 5-harness sat	in weave fabric, 1	1 x 11 tow/in. prepreg				
FIBER:	Hercules AS4 6k, surface-treated "W"*, no twist			MATRIX:	Hercules 3502				
T _g (dry):	404°F	T _g (wet):	313°F	Tg METHOD:	ТМА				
PROCESSING:	Autoclave	cure: 280 ± 5°	°F, 90 minutes,	85+15-0 psi; 350°	°F, 120 minutes.				
* now "G"									
Date of fiber man	ufacture		10/82-3/83	Date of testing		9/83-1/84			
Date of resin manufacture 5/83			Date of data submittal		12/93, 5/94				
Date of prepreg manufacture 5/83			Date of analysis		8/94				

LAMINA PROPERTY SUMMARY

8/83-9/83

	75°F/A	-65°F/A	180°F/W	250°F/W	
Tension, 1-axis	BM	BM	BM	BM	
Tension, 2-axis					
Tension, 3-axis					
Compression, 1-axis	BM	IS	BM	BM	
Compression, 2-axis					
Compression, 3-axis					
Shear, 12-plane	BM	BM	BS	BS	
Shear, 23-plane					
Shear, 31-plane					

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.79		
Resin Density	(g/cm ³)	1.26		
Composite Density	(g/cm ³)	1.57	1.55 - 1.60	
Fiber Areal Weight	(g/m ²)	365	361 - 372	
Fiber Volume	(%)	58	56 - 57	
Ply Thickness	(in)	0.0145	0.0142 - 0.0158	

LAMINATE PROPERTY SUMMARY

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

MIL-HDBK-17-2F Volume 2, Chapter 4 Carbon Fiber Composites

MATERI	AL: AS4	6k/3502 5-harn	ess satin weav	ve fabric			l.2.16(a) 65 - 5HS
FIBER V PLY THI	OLUME: 56-5 CKNESS: 0.01	7 wt% 7 % 46-0.0157 in.	COMP: DE VOID CON	ÁS4/3502 Tension, 1-axis [0 _f /90 _f /0 _f /90 _f /90 _f /0 _f] 75/A, -65/A, 180/W			
TEST ME				S CALCULATIO		B30,	Mean
BMS	6 8-168D		Linear	portion of curve	9		
		r volume to 57%	6 (0.0145 in. C				
Tempera		7: amb		-6		18	
	Content (%) Im at T, RH	amp	lent	amb	lent	1.1 - (1	
Source C		49	9	49	9	4	
		Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean Minimum Maximum C.V.(%)	114 97.1 126 6.87		105 87.9 116 5.33		117 102 128 5.29	
F_1^{tu}	B-value Distribution	91.9 ANOVA	(2)	95.0 Normal	(2)	102 ANOVA	(2)
(ksi)	C ₁ C ₂	8.15 2.70		104.9 5.59		6.31 2.33	
	No. Specimens No. Batches Data Class	30 5 B30		30 5 B3	i	30 5 B3	5
E_1^t	Mean Minimum Maximum C.V.(%)	9.61 9.29 10.4 3.08	(2)	9.67 9.09 10.1 2.35	(2)	10.5 9.74 10.9 2.75	(2)
(Msi)	No. Specimens No. Batches Data Class	3(5 Me	5	3(5 Me	i	3) 5 Me	5
v_{12}^{t}	Mean No. Specimens No. Batches						
	Data Class Mean Minimum Maximum C.V.(%)						
${m arepsilon}_1^{ m tu}$	B-value Distribution						
(με)	C ₁ C ₂						
	No. Specimens No. Batches Data Class						

Conditioned at 160°F, 95-100% relative humidity until the moisture content was between 1.1 and 1.3%.
 Only normalized data were made available for analysis.

MIL-HDBK-17-2F Volume 2, Chapter 4 Carbon Fiber Composites

MATERI	AL: AS4	6k/3502 5-harr	ness satin weav	/e fabric				4.2.16(b) 65 - 5HS
FIBER V	OLUME: 56-5	7 wt% 7 % 50-0.0157 in.	Comp: De Void Con	AS4/3502 Tension, 1-axis [0 _f /90 _f /0 _f /90 _f /90 _f /0 _f] 250/W				
TEST ME				S CALCULA				Mean
BMS	S 8-168D		Linear	portion of c	urve			
NORMAL	LIZED BY: Fibe	r volume to 57%	% (0.0145 in. C	PT)				
Tempera		25	50 - 1.3					
	Content (%) um at T, RH	· · · · · (1						
Source C		4						
		Normalized	Measured	Normalize	ed N	leasured	Normalized	Measured
	Mean Minimum Maximum C.V.(%)	108 96.8 119 4.62						
F ₁ ^{tu}	B-value Distribution	96.6 Weibull	(2)					
(ksi)	$\begin{array}{c} C_1 \\ C_2 \end{array}$	111 23.1						
	No. Specimens No. Batches Data Class	B	5					
E_1^t	Mean Minimum Maximum C.V.(%)	10.1 9.29 10.7 3.65	(2)					
(Msi)	No. Specimens No. Batches Data Class	3 t Me	5					
v_{12}^{t}	Mean No. Specimens No. Batches							
	Data Class Mean Minimum Maximum C.V.(%)							
$arepsilon_1^{ ext{tu}}$	B-value Distribution							
(με)	C ₁ C ₂							
	No. Specimens No. Batches Data Class							

Conditioned at 160°F, 95-100% relative humidity until the moisture content was between 1.1 and 1.3%.
 Only normalized data were made available for analysis.

MIL-HDBK-17-2F Volume 2, Chapter 4 Carbon Fiber Composites

MATERIA		6k/3502 5-harn				C/EP 36	.2.16(c) 65 - 5HS		
FIBER V	OLUME: 56-5	7 wt% 7 % 42-0.0157 in.	COMP: DE VOID CON		-1.56 g/cm ³ 0.2%	AS4/3502 Compression, 1-axis [0 _f /90 _f /0 _f /90 _f /0 _f] 75/A, -65/A, 180/W			
TEST ME	ETHOD:		MODULUS	S CALCULATIO	N:		n, Interim		
AST	M D 695M (1) (4)		Line	ar portion of curv	ve				
NORMAL	LIZED BY: Fibe	r volume to 57%	o (0.0145 in. C	PT)					
	tture (°F) Content (%) ım at T, RH	7! amb		-6: ambi		18 1.1 - (2	1.3		
Source C	Code	49		49		49	9		
	Mean	Normalized 104	Measured	Normalized 108	Measured	Normalized 65.9	Measured		
	Minimum Maximum C.V.(%)	79.7 122 10.1		85.0 118 8.62		52.1 76.7 9.81			
F ₁ ^{cu}	B-value Distribution	83.7 Weibull	(5)	(3) Weibull	(5)	52.4 Weibull	(5)		
(ksi)	C ₁ C ₂	109 12.1		111 16.4		68.7 11.7			
	No. Specimens No. Batches Data Class	30 5 B30		15 5 Inter		5	30 5 B30		
E_1^c	Mean Minimum Maximum C.V.(%)	8.49 8.15 8.86 2.13	(5)	8.90 7.70 11.0 10.3	(5)	9.21 6.25 12.5 18.2	(5)		
(Msi)	No. Specimens No. Batches Data Class	3(5 Me		14 5 Inter		3(5 Me	i		
v_{12}^{c}	Mean No. Specimens No. Batches								
	Data Class Mean Minimum Maximum C.V.(%)								
$\varepsilon_1^{\rm cu}$	B-value Distribution								
(με)	C ₁ C ₂								
	No. Specimens No. Batches Data Class								

Tabbed specimen, length 3.12 inch, width 0.050 inch, gage length 0.50 inch.
 Conditioned at 160°F, 95-100% relative humidity until the moisture content was between 1.1 and 1.3%.

(3) Basis values are presented only for A and B data classes.

(4) The test method, ASTM D 695M-96, was withdrawn on July 10, 1996.

(5) Only normalized data were made available for analysis.

MIL-HDBK-17-2F Volume 2, Chapter 4 Carbon Fiber Composites

MATERI	AL: AS4	4 6k/3502 5-harr	ess satin weav	ve fabric		Table 4	l.2.16(d)
FIBER V	OLUME: 56- CKNESS: 0.0	37 wt% 57 % 142-0.0157 in.	COMP: DE VOID CON	Compress [0 _f /90 _f /0 _f / 25	AS4/3502 Compression, 1-axis [0 _t /90 _t /0 _t /90 _t /90 _t /0 _t] 250/W B30, Mean		
	M D 695M (1) (3)			ar portion of cu			Mean
AST	IN D 095IN (1) (3)		Line		ve		
NORMAL	LIZED BY: Fib	er volume to 57%	6 (0.0145 in. C	PT)			
Tempera		25					
	Content (%)	1.1 ·					
Equilibriu Source C	um at T, RH	(2					
Source C	Jode	4 Normalized	9 Measured	Normalized	Measured	Normalized	Measured
	Mean	56.3	IVIEASULEU	normalized	IVIEASULEU	Normalized	IVIEASULEU
	Minimum	45.5					
	Maximum	75.2					
	C.V.(%)	16.0					
	B-value	30.5	(4)				
F_1^{cu}	Distribution	ANOVA	(+)				
(ksi)	C ₁	9.41					
(KSI)	C_2	2.75					
	No. Specimens	3					
	No. Batches Data Class	B					
	Mean	10.3	50				
	Minimum	8.88					
	Maximum	12.4	(4)				
E_1^c	C.V.(%)	6.60					
(Msi)	No. Specimens No. Batches	3					
	Data Class	Me					
	Mean No. Specimens						
1 ^c	No. Batches						
v_{12}^{c}	Data Class						
	Mean	1		1			
	Minimum						
	Maximum						
	C.V.(%)						
	B-value						
$\varepsilon_1^{ m cu}$	Distribution						
(με)	C ₁						
(100)	C ₂						
	No. Specimens						
	No. Batches						
	Data Class						

(1) Tabbed specimen, length 3.12 inch, width 0.050 inch, gage length 0.50 inch.

(2) Conditioned at 160°F, 95-100% relative humidity until the moisture content was between 1.1 and 1.3%.

(3) The test method, ASTM D 695M-96, was withdrawn on July 10, 1996.

(4) Only normalized data were made available for analysis.

MIL-HDBK-17-2F Volume 2, Chapter 4 Carbon Fiber Composites

MATERIAL: AS4 6k/3502 5-harness satin weave fabric Table 4.2.16(e) C(P) C(P) S6-5 7% COMP: DENSITY: 1.55-1.56 g/cm ³ AS4/3502 Shaar, 12-piane If (C) C/P and (C) Shaar, 12-piane If (C)				a antin wanya fahr	:-	Tab	a 4 2 46(a)
RESIN CONTENT: 36-37 wf% 56-57 % COMP: DENSITY: 1.55-1.56 g/cm ³ A\$4/3502 Shear, 12-plane [z45/±45/±45] TEST METHOD: ASTM D 3518-76 0.0145-0.0158 in. MODULUS CALCULATION: Linear portion of curve Shear, 12-plane [z45/±45/±45] Shear, 12-plane [z45/±45/±45] NORMALLZED BY: Not normalized MODULUS CALCULATION: Linear portion of curve Shear, 32-plane [z45/±45/±45] Moisture Content (%) Equilibrium at T, RH Guilibrium at T, RH C.V.(%) ambient 12.6 14.0 11.7 9.30 Maximum 13.7 15.4 12.9 10.5 6.76 B-value 10.1 10.1 9.53 6.95 No. Specimens No. Batches 36 36 36 36 No. Specimens No. Batches 36 36 36 36 Minimum (Minimum 0.485 0.638 0.147 0.202 Maximum (Minimum 0.485 0.638 0.147 0.212 Maximum (Kisi) No. Specimens No. Batches 36 36 5 5 Data Class Mean 0.622 11.8 1 1 <	MATERI	IAL: A54	6K/3502 5-names	s satin weave tabr	IC		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	RESIN C	CONTENT: 36-3	37 wt%	COMP: DENSIT	-Y: 1.55-1.56 g/d		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				VOID CONTEN		Shea	
TEST METHOD: ASTM D 3518-76 MODULUS CALCULATION: Linear portion of curve B30, Mean, Screening NORMALIZED BY: Not normalized International curve 11.1 - 1.3 (1) 1.1 - 1.3 (1) 1.1 - 1.3 (1) Temperature (°F) Moisture Content (%) Equilibrium at 7, RH 75 ambient -65 ambient 180 250 (1) 11.1 - 1.3 (1) Mean 12.6 14.0 11.7 (2) 9.30 8.27 (1) Maximum 13.7 15.4 12.9 (1,8) 10.5 (2, V.(%) 6.95 (6, 95 (2, 2) 6.95 (6, 95 (6, 95) B-value 10.1 (1) 10.1 (1, 1) 9.53 (1, 1) 6.95 (6, 95 (2, 2) 6.95 (6, 95 (2, 2) B-value 10.1 (ksi) 0.7775 (1, 16 0.669 (6, 98 (2, 2) 0.698 (3, 20) 3.37 No. Specimens No. Batches 36 (1, 2) 3.6 (1, 3, 20) 3.37 0.212 (2, 2) 0.203 (3, 37 Mean 0.514 (4) 0.682 (1, 2) 0.204 (1, 2) 0.174 (1, 1) 0.147 (2, 2) Minimum Maximum C.V.(%) 3.68 (3, 40) 3.40 (2, 2) 1.1 (2, 2) 1.1 (2, 2) Mean Mean Mean Mean	PLY TH	ICKNESS: 0.01	45-0.0158 in.				
NORMALIZED BY: Not normalized Temperature (°F) 75 -65 180 250 Moisture Content (%) ambient ambient 1.1 - 1.3 1.1 - 1.3 Equilibrium at T, RH 49 49 49 49 Mean 12.6 14.0 11.7 9.30 Minimum 11.4 12.1 10.7 8.27 Maximum 13.7 15.4 12.9 10.5 F ^{3U} B-value 10.1 10.1 9.53 6.95 K(ki) C1 0.775 1.16 0.669 0.698 C2 3.21 3.36 3.20 3.37 No. Specimens 5 5 5 5 Data Class B30 B30 B30 B30 Minimum 0.485 0.638 0.147 0.203 Mean 0.514 0.682 0.204 0.147 Maximum 0.553 0.731 0.212 0.203 G ² 12	TEST M	ETHOD:		MODULUS CAL	CULATION:		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	AS	TM D 3518-76		Linear portio	n of curve		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	NORMA	LIZED BY: Not	normalized				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Tompor		75	<u>c</u> e	190	250	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			amplent	ampient			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			49	49			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			-				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Maximum	13.7	15.4			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		C.V.(%)	5.61	7.47	5.24	6.76	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Durahua	40.4	10.1	0.50	0.05	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	T-SU						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				_	_		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(KSI)			-			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		C_2	3.21	3.30	3.20	3.37	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		No. Specimens	36	36	36	36	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		No. Batches	5		5		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c cccc} (Msi) & No. Specimens \\ No. Batches & 5 & 5 & 1 & 1 \\ \hline Data Class & Mean & Mean & Screening & Screening \\ \hline Mean & Minimum & Maximum & C.V.(%) & \\ \hline B-value & Distribution & \\ (\mu\epsilon) & C_1 & \\ C_2 & & & & & & & & & & & & & & & & & & &$	G ^s						
No. Batches Data Class5 Mean5 Mean1 Screening1 ScreeningMean Minimum Maximum C.V.(%)Mean Maximum C.V.(%)Image: Class of the second s	012	0.1.()0)	0.00	0.10	2.02	11.0	
No. Batches Data Class5 Mean5 Mean1 Screening1 ScreeningMean Minimum Maximum C.V.(%)MeanScreeningScreeningB-value γ_{12}^{su} B-value Distribution ζ_2 Image: ScreeningImage: Screening	(Msi)	No. Specimens	36	36	6	5	
$\begin{array}{c c} Mean & & & \\ Minimum & & & \\ Maximum & & \\ C.V.(\%) & & \\ B-value & & \\ \gamma_{12}^{su} & Distribution & \\ (\mu\epsilon) & C_1 & & \\ C_2 & & & \\ \end{array}$		No. Batches	5	5	1	1	
$\begin{array}{c} \text{Minimum} \\ \text{Maximum} \\ \text{C.V.(\%)} \\ \\ \text{B-value} \\ \gamma_{12}^{\text{su}} & \text{Distribution} \\ (\mu\epsilon) & \text{C}_1 \\ \text{C}_2 \end{array}$	L		Mean	Mean	Screening	Screening	
$\begin{array}{c} \text{Maximum} \\ \text{C.V.(\%)} \\ \\ \text{B-value} \\ \gamma_{12}^{\text{su}} & \text{Distribution} \\ (\mu\epsilon) & \text{C}_1 \\ \text{C}_2 \end{array}$							
$\begin{array}{c} \text{C.V.(\%)} \\ \text{B-value} \\ \gamma_{12}^{\text{su}} & \text{Distribution} \\ (\mu\epsilon) & \text{C}_1 \\ \text{C}_2 \end{array}$							
$\begin{array}{c} \text{B-value} \\ \gamma_{12}^{\text{su}} & \text{Distribution} \\ (\mu\epsilon) & \text{C}_1 \\ & \text{C}_2 \end{array}$							
$\begin{array}{ccc} \gamma_{12}^{su} & \text{Distribution} \\ (\mu\epsilon) & C_1 \\ & C_2 \end{array}$		5(/0)					
$ \begin{array}{ccc} & & & \\ & & & &$							
$\begin{pmatrix} \mu\epsilon \end{pmatrix} = \begin{pmatrix} C_1 \\ C_2 \end{pmatrix}$	γ_{12}^{su}	Distribution					
C ₂		C ₁					
No. Specimens							
		No. Specimens					
No. Batches							
Data Class							

(1) Conditioned at 160°F, 95-100% relative humidity until the moisture content was between 1.1 and 1.3%.

4.2.17 T-300 15k/976 unidirectional tape

Material Description:

Material: T-300 15k/976

Form: Unidirectional tape, fiber areal weight of 152 g/m², typical cured resin content of 25-35%, typical cured ply thickness of 0.0051 inches.

Processing: Autoclave cure; 250°F, 100 psi for 45 mins.; 350°F, 2 hours.

General Supplier Information:

- Fiber: T-300 fibers are continuous carbon filaments made from PAN precursor, surface treated to improve handling characteristics and structural properties. Filament count is 15,000 filaments/tow. Typical tensile modulus is 33 x 10⁶ psi. Typical tensile strength is 530,000 psi.
- Matrix: 976 is a high flow, modified epoxy resin that meets the NASA outgassing requirements. 10 days out-time at 72°F.

Maximum Short Term Service Temperature: 350°F (dry), 250°F (wet)

Typical applications: General purpose commercial and military structural applications, good hot/wet properties.

4.2.17 T-300 15k/976 unidirectional tape*

MATERIAL:	T300 15k/s	T300 15k/976 unidirectional tape							
FORM:	Fiberite T3	Fiberite T300/976 unidirectional tape prepreg							
FIBER:	Union Carbide T300 15k			MATRIX:	Fiberite 976				
T _g (dry):	518°F	T _g (wet):	493°F	T _g METHOD:	DMA				
PROCESSING:	Autoclave	Autoclave cure: 250°F, 100 psi, 45 minutes; 350°F, 2 hours							

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

Date of fiber manufacture	Date of testing			
Date of resin manufacture	Date of data submittal 2/82			
Date of prepreg manufacture 7/80	Date of analysis 9/94			
Date of composite manufacture				

72°F/A		-67°F/A	260°F/A	350°F/A			
SSSS		SSSS	SSSS	SSSS			
SS-S		SS-S	SS-S	SS-S			
SS-S		SS-S	SS-S	SS-S			
SS-S		SS-S	SS-S	SS-S			
SS		SS	SS	SS			
S		S	S	S			
	SSSS SS-S SS-S SS-S SS	SSSS SS-S SS-S SS-S SS	SSSSSSSSSS-SSS-SSS-SSS-SSS-SSS-SSSSS	SSSSSSSSSSSSSS-SSS-SSS-SSS-SSS-SSS-SSS-SSS-SSS-SSSSSSS	SSSSSSSSSSSSSSSSSS-SSS-SSS-SSS-SSS-SSS-SSS-SSS-SSS-SSS-SSS-SSS-SSS-SSS-SSS-SSS-SSSSSSSSS	SSSSSSSSSSSSSSSSSS-SSS-SSS-SSS-SSS-SSS-SSS-SSS-SSS-SSS-SSS-SSS-SSS-SSS-SSS-SSS-SSSSSSSSS	SSSS SSSSS SSSS SSSSS SSSSSS SSSSSS SSSSS SSSSS SSSSS SSSSSS SSSSS SSSSS SSSSSS SSSSSS SSSSSS SSSSSS SSSSS SSSSS SSSSS SSSSSS SSSSS SSSSS SSSSSS SSSSS SSSSSS SSSSS SSSSS S

LAMINA PROPERTY SUMMARY

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.78		
Resin Density	(g/cm ³)	1.28		
Composite Density	(g/cm ³)	1.62	1.58 - 1.65	
Fiber Areal Weight	(g/m ²)	152		
Fiber Volume	(%)	68	60 - 70	
Ply Thickness	(in)		0.0049 - 0.0053	

LAMINATE PROPERTY SUMMARY

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

		OCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL. 300 15k/976 unidirectional tape Table 4.2.17(a)								
MATERIA	AL: T300	0 15k/976 unidir	ectional tape							
RESIN CO	ONTENT: 35 w	/t%	COMP: DE) g/cm ³		o - UT I5k/976			
FIBER VO			VOID CON		n, 1-axis					
PLY THIC		53 in.			rox. 0.0%		D] ₆			
_				72/A, -67/Å, 260/A						
TEST ME	THOD:		MODULUS	S CALCULATIO	N:	Scre	ening			
ASTI	ASTM D 3039-76 Linear portion of curve									
NORMAL	NORMALIZED BY: Fiber volume to 60% (0.0053 in. CPT)									
Temperat	ure (°F)	72	2	-6	7	26	60			
	Content (%)	amb		amb		amb				
	m at T, RH									
Source C	ode	48	-	48	-	4	-			
		Normalized	Measured	Normalized	Measured	Normalized	Measured			
	Mean	211	207	199	197	236	232			
	Minimum Maximum	185 235	191 219	187 220	173 214	205 256	212 255			
	C.V.(%)	11.2	6.47	6.83	7.67	256 9.88	255 6.84			
	0. v.(70)	11.2	0.47	0.00	1.01	5.00	0.04			
	B-value	(1)	(1)	(1)	(1)	(1)	(1)			
F_1^{tu}	Distribution	Normal	Normal	Normal	Normal	Normal	Normal			
(ksi)	C ₁	211	207	199	197	236	232			
()	C_2	23.6	13.4	13.6	15.1	23.3	15.9			
	No. Specimens	5		5		5				
	No. Batches	1 Screening		1 Screening		1				
	Data Class Mean		ening 19.3		20.4	Scree 22.6	22.4			
	Minimum	19.6 17.8	19.3	20.8 19.5	20.4 19.6	22.6	22.4 21.2			
	Maximum	21.2	20.4	22.6	21.0	24.9	22.9			
E_1^t	C.V.(%)	6.09	5.18	5.88	2.74	8.97	2.19			
L										
(Msi)	No. Specimens	5		5	i	5	5			
()	No. Batches	1		1		1				
	Data Class	Scree		Scree		Scree				
	Mean		0.318		0.318		0.312			
<u>,</u>	No. Specimens	5		5		5				
v_{12}^t	No. Batches	1		1		1				
	Data Class	Scree		Scree		Scree				
	Mean		10400		8600		9900			
	Minimum		10000		8000		9500			
	Maximum		10800 3.42		9000 5 29		10500			
	C.V.(%)		3.42		5.29		4.46			
	B-value		(1)		(1)		(1)			
$arepsilon_1^{ ext{tu}}$	Distribution		Normal		Normal		Normal			
	C ₁		10400		8600		9900			
(με)	C_2		356		454		442			
	U 2		000				772			
	No. Specimens	5		4	Ļ	5	5			
	No. Batches	1		1		1				
	Data Class	Scree	ening	Scree	ening	Scree	ening			

MATERIA		0 15k/976 unidir		REQUIN	D WAS NOT SUFF	PLIED FOR THIS MATERIAL. Table 4.2.17(b)
	AL. 130	10 15K/970 uniun	ectional tape			C/Ep - UT
RESIN C	ONTENT: 35					T300 15k/976
FIBER VO			VOID CON	ITENT:	approx. 0.0%	Tension, 1-axis
PLY THIC	CKNESS: 0.0	053 in.				[0] ₆ 350/A
TEST ME	THOD:		MODULU	S CALCU	LATION:	Screening
	M D 3039-76	f curve				
7.01	W D 0000 70					
		er volume to 60%	•	PT)		
Temperat		35				
	Content (%) m at T, RH	amb	ient			
Source C		48	8			
		Normalized	Measured	Normal	ized Measured	Normalized Measured
	Mean	232	228			
	Minimum	212	219			
	Maximum C.V.(%)	248 7.11	242 3.77			
	0. V.(70)	7.11	5.11			
	B-value	(1)	(1)			
F_1^{tu}	Distribution	Normal	Normal			
(ksi)	C ₁	232	228			
	C ₂	16.5	8.63			
	No. Specimens	5	:			
	No. Batches	1				
	Data Class	Scree	ening			
	Mean	22.4	22.1			
	Minimum Maximum	21.0 24.2	20.2 23.9			
E_1^t	C.V.(%)	5.59	6.19			
L ₁	- ()					
(Msi)	No. Specimens	5				
	No. Batches	1				
	Data Class	Scree				
	Mean No. Specimens	5	0.348			
v_{12}^{t}	No. Batches	1				
V12	Data Class	Scree				
	Mean	00100	9930	1		
	Minimum		9600			
	Maximum		10700			
	C.V.(%)		5.29			
	B-value		(2)			
$arepsilon_1^{ ext{tu}}$	Distribution		Normal			
(με)	C ₁		9930			
(με)	C ₂		525			
			-			
	No. Specimens	4				
	No. Batches	1				
L	Data Class	Scree	ming	I		

MATER	<i>i</i>	0 15k/976 unidi				Table 4.2.17(c)				
FIBER	CONTENT: 25 w VOLUME: 69 % IICKNESS: 0.00		COMP: D VOID COI		C/Ep - UT T300 15k/976 Tension, 2-axis [90]₁₅ 72/A, -67/A, 260/A, 350/A					
TEST N	/IETHOD:		MODULU	S CALCULATIO	ON:	Screening				
AS	STM D 3039-76		Linear	portion of curv	e					
NORM	NORMALIZED BY: Not normalized									
	rature (°F)	72	-67	260	350					
	e Content (%) rium at T, RH	ambient	ambient	ambient	ambient					
Source		48	48	48	48					
	Mean	5.66	4.73	3.81	3.47					
	Minimum	4.53	3.23	2.87	2.67					
	Maximum C.V.(%)	6.52 15.4	6.29 25.1	4.68 17.4	3.83 13.2					
	0. v.(70)	10.4	20.1	17.4	10.2					
	B-value	(1)	(1)	(1)	(1)					
F_2^{tu}	Distribution	Normal	Normal	Normal	Normal					
(ksi)	C ₁	5.66	4.73	3.812	3.47					
	C ₂	0.870	1.19	0.664	0.458					
	No. Specimens	5	5	5	5					
	No. Batches	1	1	1	1					
	Data Class	Screening	Screening	Screening	Screening					
	Mean Minimum	1.34 1.28	1.69 1.49	1.37 1.16	1.30 1.25					
	Maximum	1.39	1.88	1.55	1.43					
E_2^t	C.V.(%)	3.13	9.01	10.1	5.83					
2										
(Msi)	No. Specimens	5	5	5	5					
	No. Batches Data Class	1 Sereening	1 Sorooping	1 Sereeping	1 Sereening					
	Mean	Screening	Screening	Screening	Screening					
	No. Specimens									
v_{21}^{t}	No. Batches									
	Data Class									
	Mean	3900	2760	2640	2620					
	Minimum Maximum	3200 4600	1900 3300	2100 3400	2200 3000					
	C.V.(%)	14.6	20.4	19.1	13.3					
fu	B-value Distribution	(1) Normal	(1) Normal	(1) Normal	(1) Normal					
$\varepsilon_2^{\mathrm{tu}}$			Normal		Normal					
(με)	C ₁	3900	2760	2640	2620					
	C ₂	570	564	503	349					
	No. Specimens	5	5	5	5					
	No. Batches	1	1	1	1					
	Data Class	Screening	Screening	Screening	Screening					

(JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.									
MATERIA	L: T300	0 15k/976 unidir	ectional tape				.2.17(d)		
					9 - UT				
RESIN CO							5k/976		
FIBER VC			VOID CON	Compression, 1-axis					
PLY THIC	CKNESS: 0.00	50 in.		[0] ₂₀					
TEOTME	TEST METHOD: MODULUS CALCULATION:						/A, 260/A		
TEST ME						Scre	ening		
AST	M D 3410A-75		Linear	portion of curve					
NORMAL	NORMALIZED BY: Fiber volume to 60% (0.0053 in. CPT)								
Temperat	ure (°F)	72	2	-6	7	26	60		
	Content (%)	amb		ambi	ent	amb			
Equilibriur	m at T, RH								
Source Co	ode	48	-	48		4			
		Normalized	Measured	Normalized	Measured	Normalized	Measured		
	Mean	188	218	192	223	147	171		
	Minimum	139	162	169	196	95.6	111		
	Maximum	214	248	218	254	177	205		
	C.V.(%)	15.9	15.9	9.76	9.76	21.7	21.7		
	B-value	(1)	(1)	(1)	(1)	(1)	(1)		
F ₁ ^{cu}	Distribution	Normal	Normal	Normal	Normal	Normal	Normal		
-									
(ksi)	C ₁	188	218 34.7	192 18.8	223 21.8	147	171		
	C ₂	29.9	34.7	10.0	21.0	31.9	37.1		
	No. Specimens	5		5		5			
	No. Batches	1		1		1			
	Data Class	Screening		Screening		Screening			
	Mean	18.7	21.8	18.8	21.9	18.4	21.4		
	Minimum	14.9	17.3	16.2	18.8	10.8	12.6		
	Maximum	21.9	25.5	25.5	29.6	22.6	26.2		
E_1^c	C.V.(%)	13.4	13.4	20.1	20.1	26.5	26.5		
(Msi)	No. Specimens	5		5		5	5		
	No. Batches	1		1		1			
	Data Class	Scree	ening	Scree	ning	Scree	ening		
	Mean								
c	No. Specimens No. Batches								
v_{12}^{c}									
	Data Class		10500						
	Mean		12500		14500		8860		
	Minimum		9500		9900		6300		
	Maximum		19600		20000		12600		
	C.V.(%)		32.2		31.5		30.2		
	B-value		(1)		(1)		(1)		
$arepsilon_1^{ m cu}$	Distribution		Normal		Normal		Normal		
		12500			14500		8860		
(με)	C ₁								
	C ₂		404		4560		2670		
	No. Specimens	5		5		5			
	No. Batches	1		1		1			
	Data Class	Scree	nina	Scree	nina	Scree			
		00100	, in ig	00100		00100	y		

MATERIA		0 15k/976 unidir					Table	4.2.17(e)
RESIN CO FIBER VO PLY THIO			VOID CONTENT: approx. 1.0%				T300 Compres [(o - UT 15k/976 sion, 1-axis 0] ₂₀ 60/A
TEST ME	TEST METHOD: MODULUS CALCULATION:							ening
AST	M D 3410A-75		Linear	portion of	curve	;		
	IZED BY: Fibe							
Equilibriu	Content (%) m at T, RH	35 amb	ient					
Source C	ode	48 Normalized	-	Normoli	- ad	Maggurad	Normalized	Maggurad
	Mean	Normalized 136	Measured 159	Normali	zed	Measured	Normalized	Measured
	Minimum Maximum C.V.(%)	107 160 18.5	124 186 18.5					
F ₁ ^{cu}	B-value Distribution	(1) Normal	(1) Normal					
(ksi)	C ₁ C ₂	136 25.2	159 29.3					
	No. Specimens No. Batches Data Class	5 1 Scree						
E ₁ ^c	Mean Minimum Maximum C.V.(%)	19.7 16.5 23.0 13.2	22.9 19.1 26.7 13.2					
(Msi)	No. Specimens No. Batches Data Class	5 1 Scree						
<i>v</i> ^c ₁₂	Mean No. Specimens No. Batches Data Class							
	Mean Minimum Maximum C.V.(%)		9400 5000 14000 39.7					
$arepsilon_1^{ m cu}$	B-value Distribution		(2) Normal					
(με)	C ₁ C ₂		9400 3730					
	No. Specimens No. Batches Data Class	5 1 Scree						

1

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

FIBER	CONTENT: 24 w VOLUME: 70 %		ectional tape COMP: DI VOID COI		3 g/cm ³ prox 0.0%	Table 4.2 C/Ep - T300 15 Compressio [90]2	UT k/976 on, 2-axis
						72/A, -67/A 350/	, 260/A,
TEST	/ETHOD:		MODULU	S CALCULATIO	ON:	Screen	
AS	ASTM D 3410A-75 Linear portion of curve						
NORM	ALIZED BY: Not r	normalized					
Moistur Equilibr	rature (°F) e Content (%) rium at T, RH	72 ambient	-67 ambient	260 ambient	350 ambient		
Source		48	48	48	48		
	Mean Minimum	30.0 26.7	35.1 26.7	22.6 19.4	19.1 17.3		
	Maximum	31.9	44.9	25.7	22.8		
	C.V.(%)	7.10	18.9	10.7	11.7		
F ₂ ^{cu}	B-value Distribution	(1) Normal	(1) Normal	(1) Normal	(1) Normal		
(ksi)	C ₁	30.0	35.1	22.6	19.1		
	C ₂	2.13	6.62	2.42	2.24		
	No. Specimens	5	5	5	5		
	No. Batches	1	1	1	1		
	Data Class Mean	Screening 1.46	Screening 1.84	Screening 1.84	Screening 1.64		
	Minimum	1.32	1.46	1.37	1.25		
	Maximum	1.73	2.18	3.03	2.02		
E_2^c	C.V.(%)	11.1	17.0	36.7	19.6		
(Msi)	No. Specimens	5	5	5	5		
(11101)	No. Batches	1	1	1	1		
	Data Class	Screening	Screening	Screening	Screening		
v_{21}^{c}	Mean No. Specimens No. Batches						
	Data Class Mean	32300	22100	14900	14200		
	Minimum	7900	13000	9600	6900		
	Maximum	46300	27700	21400	21300		
	C.V.(%)	44.7	31.1	40.1	47.2		
ε_2^{cu}	B-value Distribution	(1) Normal	(1) Normal	(2)	(1) Normal		
(με)	C ₁	32300	22100		14200		
	C ₂	14400	6880		6720		
	No. Specimens	5	5	3	5		
	No. Batches	1 Sereening	1 Screening	1 Sorooping	1 Sereeping		
<u> </u>	Data Class	Screening	Screening	Screening	Screening		

(1) Basis values are presented only for A and B data classes.

(2) The statistical analysis is not completed for less than four specimens.

MATERIA	E 1989). ALL DOCU L: T300 1	5k/976 unidirection			Tab	le 4.2.17(g)
RESIN CO FIBER VO PLY THIC	DLUME: 69 %	V	COMP: DENSITY: OID CONTENT:	1.63 g/cm ³ approx. 0.1%	T30 Shea	/Ep - UT 00 15k/976 ar, 12-plane [±45]₂s -67/A, 260/A, 350/A
TEST ME	THOD:	Ν	IODULUS CALCI	JLATION:	S	creening
	M D 3518-76		Linear portion of			0
NORMALI	IZED BY: Not not	rmalized				
Temperate	ure (°F)	72	-67	260	350	
	Content (%)	ambient	ambient	ambient	ambient	
	m at T, RH					
Source Co		48	48	48	48	
	Mean	11.1	13.7	8.25	8.30	
	Minimum	11.0	13.2	7.78	7.67	
	Maximum	11.4	15.5	8.72	9.36	
	C.V.(%)	1.23	6.99	4.78	7.80	
	B-value	(1)	(1)	(1)	(1)	
E su	Distribution	Normal	Nonpara.	Normal	Normal	
F_{12}^{su}			4			
(ksi)	C ₁	11.1 0.137	4 4.10	8.25 0.394	8.30 0.647	
	C ₂	0.137	4.10	0.394	0.647	
	No. Specimens	5	5	5	5	
	No. Batches	1	1	1	1	
	Data Class	Screening	Screening	Screening	Screening	
	Mean	0.91	1.0	0.89	0.77	
	Minimum	0.84	0.89	0.82	0.70	
	Maximum	0.96	1.08	0.94	0.82	
G ^s ₁₂	C.V.(%)	5.1	7.1	5.3	7.4	
(Msi)	No. Specimens	5	5	5	5	
()	No. Batches	1	1	1	1	
	Data Class	Screening	Screening	Screening	Screening	
	Mean Minimum Maximum C.V.(%)					
γ ^{su} (με)	B-value Distribution C1					
	C ₂ No. Specimens No. Batches Data Class					

	(JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.								
MATERIAL	: тз	300 15k/976 u	nidirection	al tape				e 4.2.17(h)	
RESIN COI FIBER VOL PLY THICK	_UME: 69	i wt%) % 0052 in.		OMP: DENSITY: OID CONTENT:	1.63 g/cm ³ approx. 0.1%		T30 SBS 72/A, -	/Ep - UT 0 15k/976 , 31-plane [0]₁₅ 67/A, 260/A,	
TEST MET	HOD.		N	10DULUS CALCI				350/A reening	
	D 2344-76		IV	Linear portion of			00	lecting	
NORMALIZ		ot normalized							
Temperatu	re (°F)		72	-67	260	3	50		
Moisture Co Equilibrium	at T, RH	an	nbient	ambient	ambient		bient		
Source Coo			48	48	48		48		
	Mean		2.9	16.6	9.36		.60		
	Minimum		9.42	14.2	8.59		.71		
	Maximum		7.1	19.6	10.8		.56		
	C.V.(%)		8.4	12.8	10.1	8	.06		
	B-value		(1)	(1)	(1)		(1)		
F_{31}^{sbs}	Distribution		eibull	Normal	Normal		rmal		
(ksi)	C ₁		3.8	16.6	9.36		.60		
(KSI)	C_1 C_2		5.17	2.12	0.949		.00 693		
	02	,		2.12	0.0+0	0.	000		
	No. Specimer	าร	10	5	5		5		
	No. Batches		1	1	1		1		
	Data Class	Scr	eening	Screening	Screening	Scre	ening		

4.2.18 IM7 12k/8551-7A unidirectional tape

These data are presented in the MIL-HDBK-17-2F Annex A.

4.2.19 AS4 3k/3501-6 5-harness satin weave fabric

Material Description:

Material: AS4-3k/3501-6

Form: 5 harness satin weave fabric, areal weight of 280 g/m², typical cured resin content of 28-30%, typical cured ply thickness of 0.0099 -0.0109 inches.

Processing: Autoclave cure; 240°F, 85 psi for 1 hour; 350°F, 100 psi for 2 hours, bleed.

General Supplier Information:

- Fiber: AS4 fibers are continuous carbon filaments made from PAN precursor, surface treated to improve handling characteristics and structural properties. Filament count is 3000 filaments/tow, no twist. Typical tensile modulus is 34 x 10⁶ psi. Typical tensile strength is 550,000 psi.
- Matrix: 3501-6 is an amine-cured epoxy resin. It will retain light tack for a minimum of 10 days at room temperature.

Maximum Short Term Service Temperature: 300°F (dry), 180°F (wet)

Typical applications: General purpose structural applications.

4.2.19 AS4 3k/3501-6 5-harness satin weave fabric (bleed)*

MATERIAL:	AS4 3k/3501-6 5-harness satin weav	C/Ep 280-5HS AS4/3501-6 (Bleed) Summary					
FORM:	Hercules AW280-5H/3501-6 5-harnes	Hercules AW280-5H/3501-6 5-harness satin weave fabric prepreg					
FIBER:	Hercules AS4 3k, no twist	MATRIX:	Hercules 3501-6				
T _g (dry):	T _g (wet):	T _g (wet): T _g METHOD:					
PROCESSING:	Autoclave cure, 240 ± 10°F at 85 psig at 100 ± 5 psig	Autoclave cure, $240 \pm 10^{\circ}$ F at 85 psig for 60 minutes; $350 \pm 10^{\circ}$ F for 120 ± 10 minutes at 100 ± 5 psig					

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

Date of fiber manufacture	Date of testing	
Date of resin manufacture	Date of data submittal	6/90
Date of prepreg manufacture	Date of analysis	2/95
Date of composite manufacture		

	75°F/A	200°F/A	75°F/W	200°F/W	
Tension, 1-axis	SS				
Tension, 2-axis					
Tension, 3-axis					
Compression, 1-axis	SS	SS	SS	II	
Compression, 2-axis					
Compression, 3-axis					
Shear, 12-plane					
Shear, 23-plane					
Shear, 31-plane					
SB Strength, 31-plane	S	S	S		

LAMINA PROPERTY SUMMARY

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.80		
Resin Density	(g/cm ³)	1.26		
Composite Density	(g/cm ³)		1.59 - 1.60	
Fiber Areal Weight	(g/m ²)	280		
Fiber Volume	(%)		60 - 62	
Ply Thickness	(in)		0.0099 - 0.0171	

LAMINATE PROPERTY SUMMARY

	75°F/A				
0/±45/90 Family					
Tension, x-axis	SS				
OHT, x-axis	S				

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL. MATERIAL: AS4 3k/3501-6 (Bleed) 5-harness satin weave fabric Table 4.2.19(a) C/Ep 280-5HS **RESIN CONTENT:** 29 wt% COMP: DENSITY: 1.61 g/cm^3 AS4/3501-6 (Bleed) FIBER VOLUME: 61 vol % VOID CONTENT: Tension, 1-axis PLY THICKNESS: 0.0100-0.0106 in. [0_f]8 75/A Screening TEST METHOD: MODULUS CALCULATION: ASTM D 3039-76 NORMALIZED BY: Specimen thickness and batch fiber volume to 57% (0.019 in. CPT) 75 Temperature (°F) Moisture Content (%) ambient Equilibrium at T, RH Source Code 43 Measured Normalized Normalized Normalized Measured Measured Mean 108 115 Minimum 93.3 98.8 Maximum 128 137 C.V.(%) 12.2 12.2 (1) **B-value** (1) ANOVA F_1^{tu} Distribution ANOVA C_1 14.9 15.8 (ksi) 5.74 5.72 C_2 No. Specimens 9 No. Batches 3 Data Class Screening Mean 9.83 10.4 Minimum 8.25 8.80 Maximum 12.0 13.1 C.V.(%) 9.88 10.8 E_1^t (Msi) No. Specimens 9 No. Batches 3 Data Class Screening Mean No. Specimens No. Batches v_{12}^{t} Data Class Mean Minimum Maximum C.V.(%) **B**-value Distribution $\varepsilon_1^{\rm tu}$ C_1 $(\mu\epsilon)$ C_2 No. Specimens No. Batches Data Class

*	ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.
---	---

MATERI	AL: AS4	3k/3501-6 (Ble	ed) 5-harness	satin weave fab	ric		4.2.19(b) 280-5HS
FIBER V		vt% ol % 199-0.0104 in.	COMP: DE VOID CON	NSITY: 1.6 ITENT:	1 g/cm ³	AS4/3501-6 (Blee Compression, 1-a [0 _f] ₈ 75/A, 200/A, 75/	
TEST ME	ETHOD:		MODULUS	S CALCULATIC	N:		ening
	MA SRM 1-88			0,12002,1110			•g
		cimen thickness	s and batch fibe	er volume to 579	% (0.019 in. CF	PT)	
Tempera	ture (°F)	7	5	20	00	7	5
	Content (%)	amb	pient	amb	pient		et
	im at T, RH		0		2	(*	
Source C	Jode	4 Normalized	3 Measured	4 Normalized	3 Measured	4 Normalized	3 Measured
	Mean	106	113	80.8	86.1	95.8	102
	Minimum	91.0	97.7	67.6	73.7	95.8 79.3	84.7
	Maximum	115	123	93.1	99.9	106	113
	C.V.(%)	6.52	6.65	8.84	8.69	9.43	9.42
	B-value	(2)	(2)	(2)	(2)	(2)	(2)
F_1^{cu}	Distribution	ANOVA	Wèibull	Wèibull	Wèibull	Normal	Normal
(ksi)	C ₁	7.21	116	83.9	89.4	95.8	102
(10)	C_2	3.73	18.4	13.6	13.4	9.03	9.64
	No. Specimens		3		3	9	9
	No. Batches		3 oping	Soro			2
	Data Class Mean	8.7	ening 9.3	Scree 8.48	9.04	Scree 9.23	9.87
	Minimum	7.6	9.3 8.2	6.42	7.00	9.23	9.87
	Maximum	9.4	9.9	9.43	10.0	9.44	10.2
E_1^c	C.V.(%)	8.2	8.4	10.6	10.4	1.55	1.68
(Msi)	No. Specimens	1	3	1	3	(9
	No. Batches		3	3			2
	Data Class	Scre	ening	Scree	ening	Scre	ening
v_{12}^{c}	Mean No. Specimens No. Batches						
12	Data Class						
	Mean Minimum Maximum						
	C.V.(%)						
$arepsilon_1^{ m cu}$	B-value Distribution						
(με)	C ₁						
(με)	C_2						
	No. Specimens No. Batches						
	Data Class						

Conditioned at 140°F, 95% relative humidity for 30 days.
 Basis values are presented only for A and B data classes.

* ALL	DOCUMENTATION	N PRESENTLY	REQUIRED W	ERE NOT SUP	PLIED FOR TH	
MATERIA	AL: AS4	3k/3501-6 (Blee	ed) 5-harness	satin weave fab	ric	Table 4.2.19(c)
FIBER V		/t% ol % 11-0.0171 in.	COMP: DE VOID CON	C/Ep 280-5HS AS4/3501-6 (Bleed) Compression, 1-axis [0₁] ₈ 200/W		
TEST ME	ETHOD:		MODULUS	S CALCULATIC	N:	Interim
SAC	MA SRM 1-88					
	-	cimen thickness		er volume to 579	% (0.019 in. CF	די)
Tempera		20				
	Content (%) m at T, RH	(1				
Source C		43	3			
		Normalized	Measured	Normalized	Measured	Normalized Measured
	Mean Minimum	57.0 49.8	60.8 53.8			
	Maximum	67.8	72.2			
	C.V.(%)	8.85	8.82			
F ₁ ^{cu}	B-value Distribution	(2) ANOVA	(2) ANOVA			
(ksi)	C ₁	5.46	5.761			
	C ₂	4.57	4.38			
	No. Specimens	1:				
	No. Batches	3				
	Data Class Mean	Inte 8.1	8.6			
	Minimum	6.5	7.0			
	Maximum	9.0	9.4			
E_1^c	C.V.(%)	10	10			
(Msi)	No. Specimens	1:				
	No. Batches Data Class	3 Inte				
	Mean					
, .C	No. Specimens No. Batches					
v_{12}^{c}	Data Class					
	Mean					
	Minimum					
	Maximum C.V.(%)					
	0 (70)					
CII	B-value Distribution					
$\varepsilon_1^{\rm cu}$						
(με)	C ₁ C ₂					
	\mathbf{U}_2					
	No. Specimens					
	No. Batches Data Class					
L	Dala Olass	L				

ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL

Conditioned at 140°F, 95% relative humidity for 30 days.
 Basis values are presented only for A and B data classes.

MATERIA	L:			narness satin wea	<u>T SUPPLIED FOR</u> ve fabric	Table	e 4.2.19(d) 280-5HS
RESIN CONTENT:28-30 wt%FIBER VOLUME:60-62 volPLY THICKNESS:0.0099-0.0			% V	COMP: DENSITY: OID CONTENT:	1.59-1.60 g/cm	³ AS4/35 SBS,	01-6 (Bleed) 31-plane [0 _f] ₈ 200/A, 75/W
TEST METHOD: MODULUS CALCULATION:							reening
ASTM	1 D 2344-84						
NORMALI	ZED BY:	Not norm	alized				
Temperatu			75	200	75		
	Content (%)		ambient	ambient	wet		
	n at T, RH				(1)		
Source Co			43	43	43		
	Mean		9.93	7.94	9.35		
	Minimum		8.50 10.7	7.60 8.40	9.00 9.60		
	Maximum C.V.(%)	I	7.38	8.40 3.89	9.60 2.22		
	0. v.(/0)		1.50	5.09	2.22		
	B-value		(2)	(2)	(2)		
F ₃₁ ^{sbs}	Distributio	on	Normal	ANOVA	Normal		
(ksi)	C ₁		9.93	0.353	9.35		
(KSI)	C_2		0.733	6.02	0.207		
	02		0.100	0.02	0.201		
	No. Spec	imens	9	9	6		
	No. Batch		3	3	2		
	Data Clas	s	Screening	Screening	Screening		

Conditioned at 140°F, 95% relative humidity for 30 days.
 Basis values are presented only for A and B data classes.

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL. AS4 3k/3501-6 (Bleed) 5-harness satin weave fabric MATERIAL: Table 4.2.19(e) C/Ep 280-5HS **RESIN CONTENT:** COMP: DENSITY: 1.59 g/cm³ AS4/3501-6 (Bleed) 29 wt% Tension, x-axis FIBER VOLUME: 61 vol % VOID CONTENT: PLY THICKNESS: 0.0105-0.0106 in. [(0/±45/90)_f]s 75/A Screening TEST METHOD: MODULUS CALCULATION: ASTM D 3039-76 NORMALIZED BY: Specimen thickness and batch fiber volume to 57% (0.019 in. CPT) Temperature (°F) 75 Moisture Content (%) ambient Equilibrium at T, RH Source Code 43 Normalized Measured Normalized Measured Normalized Measured Mean 83.4 88.6 Minimum 75.7 81.3 88.2 94.2 Maximum C.V.(%) 5.28 4.86 **B-value** (1) (1) F_x^{tu} Distribution Normal Normal (ksi) C_1 83.4 88.6 C_2 4.41 4.30 No. Specimens 6 No. Batches 2 Data Class Screening Mean 6.9 7.3 Minimum 7.0 6.6 Maximum 7.0 7.5 2.8 C.V.(%) 2.9 E_x^t (Msi) No. Specimens 6 No. Batches 2 Data Class Screening Mean No. Specimens No. Batches $v_{\rm xy}^{\rm t}$ Data Class Mean Minimum Maximum C.V.(%) **B**-value $\varepsilon_{\rm x}^{\rm tu}$ Distribution C_1 (µɛ) C_2 No. Specimens No. Batches Data Class

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL. MATERIAL: AS4 3k/3501-6 (Bleed) 5-harness satin weave fabric Table 4.2.19(f) C/Ep 280-5HS **RESIN CONTENT:** COMP: DENSITY: 1.59-1.60 g/cm³ AS4/3501-6 (Bleed) 29-30 wt% OHT, x-axis FIBER VOLUME: 61-62 vol % VOID CONTENT: PLY THICKNESS: 0.0105-0.0109 in. [(0/±45/90)_f]s 75/A Screening TEST METHOD: MODULUS CALCULATION: SACMA SRM 5-88 NORMALIZED BY: Specimen thickness and batch fiber volume to 57% (0.019 in. CPT) Temperature (°F) 75 Moisture Content (%) ambient Equilibrium at T, RH Source Code 43 Normalized Measured Normalized Measured Normalized Measured Mean 58.4 63.0 57.0 60.9 Minimum 61.0 64.5 Maximum C.V.(%) 2.57 2.43 (1) **B-value** (1) F_x^{oht} Distribution Normal Normal (ksi) C_1 58.4 63.0 C_2 1.50 1.53 No. Specimens 6 No. Batches 2 Data Class Screening Mean Minimum Maximum E_x^{oht} C.V.(%) (Msi) No. Specimens No. Batches Data Class Mean Minimum Maximum C.V.(%) **B-value** $\varepsilon_{\rm x}^{\rm oht}$ Distribution C_1 (µɛ) C_2 No. Specimens No. Batches Data Class

4.2.20 AS4 3k/3501-6 5-harness satin weave fabric

Material Description:

Material: AS4-3k/3501-6

Form: 5 harness satin weave fabric, areal weight of 280 g/m², typical cured resin content of 36-39%, typical cured ply thickness of 0.0110 -0.0121 inches.

Processing: Autoclave cure; 240°F, 85 psi for 1 hour; 350°F, 100 psi for 2 hours, no bleed.

General Supplier Information:

- Fiber: AS4 fibers are continuous carbon filaments made from PAN precursor, surface treated to improve handling characteristics and structural properties. Filament count is 3000 filaments per tow, no twist. Typical tensile modulus is 34 x 10⁶ psi. Typical tensile strength is 550,000 psi.
- Matrix: 3501-6 is an amine-cured epoxy resin. It will retain light tack for a minimum of 10 days at room temperature.

Maximum Short Term Service Temperature: 300°F (dry), 180°F (wet)

Typical applications: General purpose structural applications.

4.2.20 AS4 3k/3501-6 (no bleed) 5-harness satin weave fabric*

MATERIAL:	AS4 3k/3501-6 (No Bleed) 5-har	C/EP 280-5HS AS4/3501-6 (No Bleed) Summary	
FORM:	Hercules AW280-5H/3501-6 5-h	arness satin weave fabr	c prepreg
FIBER:	Hercules AS4 3k, no twist	MATRIX:	Hercules 3501-6
T _g (dry):	T _g (wet):	T _g METHOD:	
PROCESSING:	Autoclave cure, $240 \pm 10^{\circ}$ F at 85 for 120 ± 10 minutes.	5 psig for 60 minutes; 35	0 ± 10°F at 100 ± 5 psig

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

Date of fiber manufacture	Date of testing	
Date of resin manufacture	Date of data submittal	6/90
Date of prepreg manufacture	Date of analysis	2/95-3/95
Date of composite manufacture		

LAMINA PROPERTY SUMMARY

75°F/A		-65°F/A	200°F/A				
SS		SS	SS				
SS							
S							
	SS SS	SS SS	SS SS	SS SS SS	SS SS SS SS SS	SS SS SS SS SS SS	SS SS SS SS SS Image: SS <th< td=""></th<>

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.80		
Resin Density	(g/cm ³)	1.27		
Composite Density	(g/cm ³)	1.55	1.55 - 1.56	
Fiber Areal Weight	(g/m ²)	280		
Fiber Volume	(%)	53	52 - 55	
Ply Thickness	(in)	0.011	0.011 - 0.017	

LAMINATE PROPERTY SUMMARY

	75°F/A				
0/±45/90 Family					
Tension, x-axis	SS				
OHT, x-axis	S				

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS	S MATERIAL.
---	-------------

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.										
MATERIA	AL: AS4	3k/3501-6 (No	Bleed) 5-harne	ess satin weave	fabric		l.2.20(a)			
FIBER V	OLUME: 52-5	39 wt% COMP: DENSITY: 1.55-1.56 g/cm ³ 55 vol % VOID CONTENT: 111-0.0171 in.				AS4/3501-6 Tensio	C/EP 280-5HS AS4/3501-6 (No Bleed) Tension, 1-axis [0ɾ]₃			
						75/A, -65	5/A, 200/A			
TEST ME			MODULUS	S CALCULATIO	N:	Scre	ening			
ASTM D 3039-76										
NORMALIZED BY: Specimen thickness and batch fiber volume to 57% (0.011 in. CPT)										
Tempera		75		-6		20				
	Content (%)	amb	ient	amb	ient	amb	ient			
Source C	im at T, RH Code	4:	3	43	3	4	3			
000100 0	.000	Normalized	Measured	Normalized	Measured	Normalized	Measured			
	Mean	134	125	125	117	130	121			
	Minimum	129	117	120	109	124	116			
	Maximum	146	136	136	127	141	136			
	C.V.(%)	3.79	4.85	3.85	4.89	4.49	5.11			
F_1^{tu}	B-value Distribution	(1) Normal	(1) ANOVA	(1) Normal	(1) ANOVA	(1) Lognormal	(1) Nonpara.			
(ksi)	C ₁	134	6.56	125	6.07	4.86	6			
(101)	C_2	5.07	4.77	4.81	4.40	0.0440	2.25			
	No. Specimens	9	1	9		ç)			
	No. Batches	3		3		3				
	Data Class Mean	Scree 9.67	ening 9.06	Scree 10.2	ening 9.57	Scree 10.8	ening 10.1			
	Minimum	9.39	8.60	9.63	8.80	9.88	9.00			
	Maximum	9.88	9.50	11.0	10.3	11.8	11.3			
E_1^t	C.V.(%)	1.65	3.63	4.26	5.68	6.74	8.23			
(Msi)	No. Specimens	9	I	9		ç)			
. ,	No. Batches	3		3		3	3			
	Data Class	Scree	ening	Scree	ening	Scree	ening			
v_{12}^{t}	Mean No. Specimens No. Batches									
	Data Class									
	Mean									
	Minimum									
	Maximum C.V.(%)									
	0. v .(/0)									
	B-value									
$arepsilon_1^{ ext{tu}}$	Distribution									
(με)	C ₁									
(µc)	C ₂									
	No. Specimens									
	No. Batches									
	Data Class									

*	ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.
---	---

MATERIA	DOCUMENTATION AL: AS4	3k/3501-6 (No		Table 4.2.20(b)			
FIBER V	OLUME: 52-5	39 wt% COMP: DENSITY: 1.55-1.56 g/cm ³ 55 vol % VOID CONTENT: 14-0.0121 in.			C/EP 280-5HS AS4/3501-6 (No Bleed) Compression, 1-axis [0 _f] ₈ 75/A		
TEST ME			MODULUS	S CALCUL	ATION	:	Interim
SAC	MA SRM 1-88						
	-	cimen thickness	and batch fibe	er volume t	o 57%	(0.011 in. CP	T)
Equilibriu	Content (%) m at T, RH	7: amb					
Source C	ode	4:				<u> </u>	
	Maan	Normalized	Measured	Normaliz	ed	Measured	Normalized Measured
	Mean Minimum Maximum C.V.(%)	129 121 145 5.02	121 111 137 6.03				
F ₁ ^{cu}	B-value Distribution	(1) Weibull	(1) ANOVA				
(ksi)	C ₁ C ₂	133 18.9	7.84 4.39				
	No. Specimens No. Batches Data Class	1: 3 Inte	rim				
E_1^c	Mean Minimum Maximum C.V.(%)	9.42 8.71 10.0 4.25	8.81 8.30 9.50 5.35				
(Msi)	No. Specimens No. Batches Data Class	15 3 Interim					
v_{12}^{c}	Mean No. Specimens No. Batches						
	Data Class Mean Minimum Maximum C.V.(%)						
$arepsilon_1^{ m cu}$	B-value Distribution						
(με)	C ₁ C ₂						
	No. Specimens No. Batches Data Class						

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.									
MATERIAL									
RESIN CO FIBER VO PLY THICH	LUME:	36-39 wť 52-55 vo 0.0110-0	۱% ۱	COMP: DENSITY: 1.55-1.56 g/cm ³ VOID CONTENT: in.			C/Ep 280-5HS AS4/3501-6 (No Bleed) SBS, 31-plane [0 _{7]8} 75 (A		
TEST MET	HOD		Ν	NODULUS CALCU	II ATION [.]		So	75/A reening	
	D 2344-84			N/A					
NORMALIZ		Not norm	alized						
Temperatu			75						
Moisture C			ambient						
Equilibrium Source Co			40						
Source Co	de Mean		43 11.3						
	Minimum		10.1						
	Maximum		12.1						
	C.V.(%)		5.05						
	. .								
-shs	B-value Distributio	<u>_</u>	(1) ANOVA						
F_{31}^{sbs}		1							
(ksi)	C ₁ C ₂		0.611 4.35						
	02		4.55						
	No. Specir	mens	15						
	No. Batche		3						
	Data Class	5	Screening						

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

(1) Short beam strength test data are approved for Screening Data Class only.

*	ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.
---	---

MATERIA	DOCUMENTATION AL: AS4	3k/3501-6 (No					Table	4.2.20(d)	
FIBER V	OLUME: 52-5	39 wt% COMP: DENSITY: 1.55-1.56 g/cm ³ 55 vol % VOID CONTENT: 113-0.0116 in.					C/EP 280-5HS AS4/3501-6 (No Bleed) Tension, x-axis [(0/45/90/-45) f]s 75/A		
TEST ME	THOD:		MODULUS	S CALCUL	ATION	l:	Screening		
AST	M D 3039-76								
	-	cimen thickness		er volume t	o 57%	(0.011 in. CP	T)		
Equilibriu	Content (%) m at T, RH	7: amb							
Source C	ode	4:		NI P			<u> </u>		
	Maan	Normalized	Measured	Normaliz	zed	Measured	Normalized	Measured	
	Mean Minimum Maximum C.V.(%)	80.4 77.1 86.4 3.85	75.3 68.8 82.0 5.41						
F _x ^{tu}	B-value Distribution	(1) Normal	(1) ANOVA						
(ksi)	C ₁ C ₂	80.4 3.09	4.45 5.07						
	No. Specimens No. Batches Data Class	9 3 Scree							
E_x^t	Mean Minimum Maximum C.V.(%)	6.94 6.73 7.13 1.87	6.50 6.30 6.60 2.04						
(Msi)	No. Specimens No. Batches Data Class	9 3 Screening							
$\nu^{\rm t}_{\rm xy}$	Mean No. Specimens No. Batches		-						
	Data Class Mean Minimum Maximum C.V.(%)								
$\boldsymbol{\varepsilon}_{\mathrm{x}}^{\mathrm{tu}}$	B-value Distribution								
(με)	C ₁ C ₂								
	No. Specimens No. Batches Data Class								

MATERIAL RESIN COI FIBER VOL PLY THICK TEST METI SACM	NTENT: 36-38 UME: 52-58 NESS: 0.011 HOD: A SRM 5-88	3k/3501-6 (No E 9 wt% 5 vol % 13-0.0116 in.	COMP: DE VOID CON	:NSITY: 1 ITENT:	ve fabric .55-1.56 g/cm ³	C/EP 2 AS4/3501-6 OHT,	x-axis	
FIBER VOL PLY THICK TEST METI	.UME: 52-58 NESS: 0.017 HOD: A SRM 5-88	5 vol %	VOID CON	ITENT:	.55-1.56 g/cm ³	AS4/3501-6 OHT,	6 (No Bleed) x-axis	
TEST MET	HOD: A SRM 5-88	13-0.0110 m.	MODULUS				AS4/3501-6 (No Bleed) OHT, x-axis [(0/±45/90) _f]s	
	A SRM 5-88		MODULUS			75/A Screening		
0,1011				MODULUS CALCULATION:				
	ED DT. Spec	imon thicknoss	and batch fibe	or volumo to F	57% (0.011 in. CF	די)		
					7778 (0.011 III. CI			
Temperatur Moisture Co		75 ambi						
Equilibrium		amo	ent					
Source Coo	le	43						
		Normalized	Measured	Normalized	Measured	Normalized	Measured	
	Mean Minimum	54.4 51.4	55.5 52.9					
	Maximum	57.7	58.7					
	C.V.(%)	4.58	3.72					
	B-value Distribution	(1) ANOVA	(1) Normal					
(ksi)	C ₁ C ₂	2.80 5.64	55.5 2.06					
	No. Specimens No. Batches Data Class	9 3 Scree						
	Mean	00166	ming					
	Minimum							
	Maximum C.V.(%)							
	No. Specimens No. Batches Data Class							
	Mean							
	Minimum Maximum							
	C.V.(%)							
	B-value Distribution							
υx	C ₁							
	C ₂							
	No. Specimens No. Batches Data Class							

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

4.2.21 IM6 3501-6 unidirectional tape

These data are presented in the MIL-HDBK-17-2F Annex A.

4.2.22 IM7 12k/8552 unidirectional tape

These data are presented in the MIL-HDBK-17-2F Annex A.

4.2.23 T300 3k/977-2 plain weave fabric

These data are presented in the MIL-HDBK-17-2F Annex A.

4.2.24 T-300 3k/977-2 8-harness satin weave fabric

These data are presented in the MIL-HDBK-17-2F Annex A.

4.2.25 IM7 12k/977-2 unidirectional tape

These data are presented in the MIL-HDBK-17-2F Annex A.

4.2.26 AS4 6k/PR500 5-harness satin weave fabric

Material Description:

Material: AS4 6k/PR500

Form: 5 harness satin weave fabric, with 4% PT500 tackifier resin, fiber areal weight of 370 g/m², injected with PR500 resin by Resin Transfer Molding (RTM); typical cured resin content of 28-34%, typical cured ply thickness of 0.013 - 0.0145 inches.

Processing: RTM injection at > 320°F, cure for 2 hours at 350°F

General Supplier Information:

- Fiber: Hercules/Hexcel AS4 fibers are continuous carbon filaments made from a PAN precursor woven into 5HS fabric. Typical tensile modulus is 34 x 10⁶ psi. Typical tensile strength is 550,000 psi.
- Matrix: 3M PR 500 is a one part, 350°F curing epoxy resin system especially suited to RTM processing. Characteristics include: excellent toughness with 300°F wet mechanical performance, several weeks of room temperature stability and low viscosity at recommended injection temperature.

Maximum Short Term Service Temperature: 350°F (dry), 300°F (wet)

Typical applications: Primary and secondary aircraft structure (commercial and military) and other applications requiring unusual hot/wet properties and impact resistance where RTM advantages such as precise dimensional tolerances, part consolidation, complex lay-ups and replicated surface finishes are desired.

Volume 2, Chapter 4 Carbon Fiber Composites

4.2.26 AS4 6k/PR500 5-harness satin weave fabric*

MATERIAL:	AS4 6k/PI	R 500 harness	s satin weave fa	abric		C/Ep 370-5HS AS4/PR 500 Summary		
FORM:	Fiberite 5-	Fiberite 5-harness satin weave fabric 12 tows/in., 4% PT-500						
FIBER:	Hercules	Hercules AS4 6K, GP sizing, no twist MATRIX: 3M PR 500 RTM						
T _g (dry):	378°F	T _g (wet):	340°F	T _g METHOD:	SRM 18-94, RDA (GN knee		
PROCESSING:	80 psi, mo	Resin transfer molding: 360±10°F, 120 minutes, press pressure 175 psi, internal 80 psi, mold temperature during injection 320°F, pump plate temperature 140-5, puperate 160-5						

Date of fiber manufacture	12/93-5/94	Date of testing	5/95-11/95
Date of resin manufacture	8/94-9/94	Date of data submittal	6/96
Date of prepreg manufacture	11/94-12/94	Date of analysis	8/96
Date of composite manufacture	1/95-10/95		

	72°F/A	-75°F/A	180°F/A	300°F/A	350°F/A	180°F/ W	240°F/W	300°F/W
Tension, 1-axis	II-I		II-I	SS-S	IS-S	II-S	II-S	II-I
Tension, 2-axis								
Tension, 3-axis								
Compression, 1-axis	II	-I	II	I	S	I	S	S
Compression, 2-axis								
Compression, 3-axis								
Shear, 12-plane	II	II	SS	II	SS	II	SS	SS
Shear, 23-plane								
Shear, 31-plane	I		I	I		I		I
SB Strength, 31-plane	S		S	S		S		S

LAMINA PROPERTY SUMMARY

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

Data are also included for 12-plane shear for four fluids in addition to water.

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.787		ASTM C693
Resin Density	(g/cm ³)	1.25		ASTM D 792
Composite Density	(g/cm ³)		1.55-1.60*	
Fiber Areal Weight	(g/m ²)	370	375	SRM 23-94
Fiber Volume	(% vol)		55.5-64.8	
Ply Thickness	(in)	0.014	0.0128-0.0149	

* Throughout this section, resin content and composite density have been calculated assuming zero void content.

	72°F/A	-75°F/A	180°F/A	300°F/A	350°F/A	180°F/W	240°F/W	300°F/W
[0/45/90/-45]								
OHT, x-axis	IS-S	IS-S	IS-S	IS-S	IS-S	IS-S	IS-S	BI-b
OHC, x-axis	BS-S		IS-S	II-I		IS-S	II-I	bI-I
CAI, x-axis	I							
G _{lc}	S							
G _{llc}	b							

LAMINATE PROPERTY SUMMARY

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

Data are also included for 240/W and five impact energy levels for CAI.

MATERIA	AL: AS4	6k/PR 500 RTM	l 5-harness sa	tin weave fabric	;	Table 4	1.2.26(a)
FIBER VO PLY THIC	DLUME: 57.6 CKNESS: 0.01	- 34 wt% 6 - 62.0 vol % 133 - 0.0142 in. COMP: DENSITY: 1.56 - 1.58 g/cm ³ VOID CONTENT: NA MODULUS CALCULATION:			AS4/I Tensio [0 72/A, 180	770-5HS PR 500 n, 1-axis ⊮]₃s D/A, 240/A Screening	
TEST ME	и 4R-94					interim, a	Screening
SKI	M 4R-94		Chord	between 1000	and 3000 µe		
	•	cimen thickness		C C			
	ture (°F) Content (%) m at T, RH	72 ambi		18 amb		24 amb	
Source C		61		6	1	6	1
		Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean Minimum Maximum C.V.(%)	115 105 124 4.50	120 111 129 4.74	115 102 126 5.48	118 105 128 4.94	117 103 125 4.79	122 106 133 5.15
F ₁ ^{tu}	B-value Distribution	(1) ANOVA	(1) ANOVA	(1) ANOVA	(1) Weibull	(1) ANOVA	(1) ANOVA
(ksi)	C ₁ C ₂	5.71 4.43	6.44 4.83	7.01 4.65	121 23.5	6.03 4.42	6.67 4.06
	No. Specimens No. Batches Data Class	17 3 Interim		10 3 Inte		1 3 Inte	3
E_1^t	Mean Minimum Maximum C.V.(%)	9.54 9.15 9.86 1.78	9.97 9.46 10.5 3.64	9.44 9.01 9.80 2.62	9.73 9.09 10.2 3.35	9.53 9.26 9.88 2.13	9.94 9.46 10.2 2.43
(Msi)	No. Specimens No. Batches Data Class	15 3 Interim		11 3 Inte	i	15 3 Interim	
v_{12}^{t}	Mean No. Specimens No. Batches						
	Data Class Mean Minimum Maximum C.V.(%)		11900 10800 13700 6.17		11800 10200 16400 12.4		11600 10000 13100 7.68
$arepsilon_1^{ ext{tu}}$	B-value Distribution		(1) Nonpara		(1) ANOVA		(1) Weibull
(με)	C ₁ C ₂		8 1.54		1510 3.294		12000 16.2
	No. Specimens No. Batches	15		15		1	3
	Data Class	Inter	im	Inte	rim	Scree	ening

MATERIA	AL: AS4	6k/PR 500 RTM	15-harness sa	tin weave fabric	;		.2.26(b)		
FIBER V	OLUME: 57.6	• 34 wt% COMP: DENSITY: 1.56 - 1.58 g/cm ³ 6 - 62.0 vol % VOID CONTENT: NA 133 - 0.0142 in. VOID CONTENT: NA			AS4/P Tensior [0	70-5HS /R 500 n, 1-axis r] ₈ 0/A, 180/W			
TEST ME	ETHOD:		MODULUS	S CALCULATIO	N:	Interim, S			
	M 4R-94		Chord between 1000 and 3000 $\mu\epsilon$						
NORMAL	LIZED BY: Spe	cimen thickness				ume (0.0145 in.	CPT)		
	Content (%) Im at T, RH	30 ambi	ient	35 amb 6 [;]	ient	18 (2 160°F 61) water		
		Normalized	Measured	Normalized	Measured	Normalized	Measured		
	Mean Minimum Maximum C.V.(%)	111 104 118 3.97	117 111 122 2.82	105 94.6 112 4.39	114 103 123 4.75	112 103 119 4.66	114 109 119 2.57		
F_1^{tu}	B-value Distribution	(1) ANOVA	(1) Weibull	(1) ANOVA	(1) Weibull	(1) ANOVA	(1) ANOVA		
(ksi)	$\begin{array}{c} C_1 \\ C_2 \end{array}$	4.91 5.14	119 49.5	5.19 5.34	117 25.9	5.89 5.48	3.25 5.03		
	No. Specimens No. Batches Data Class	14 3 Screening		15 3 Interim		15 3 Inter			
E_1^t	Mean Minimum Maximum C.V.(%)	9.51 9.14 9.79 2.16	10.0 9.79 10.5 2.21	9.07 8.46 9.76 4.50	9.88 9.28 10.5 3.76	9.70 9.40 10.2 2.25	9.92 9.47 10.4 2.78		
(Msi)	No. Specimens No. Batches Data Class	14 3 Screening		12 3 Scree		15 3 Interim			
v_{12}^{t}	Mean No. Specimens No. Batches								
	Data Class Mean Minimum Maximum C.V.(%)		11500 10900 12800 4.78		11800 10900 12400 3.88		11000 9700 11900 5.88		
$arepsilon_1^{ ext{tu}}$	B-value Distribution		(1) Normal		(1) Weibull		(1) ANOVA		
(με)	C ₁ C ₂		11500 550.		12000 34.4		691. 4.32		
	No. Specimens No. Batches	13		12		14 3			
	Data Class	Scree	ning	Scree	ening	Scree	ning		

Basis values are presented only for A and B data classes.
 Held in 160°F water bath until full saturation or 95% of equilibrium once full saturation was established.

MATERIA	AL: AS	4 6k/PR 500 RTN	15-harness sa	tin weave fabric	;	Table 4.2.26(c)
FIBER VO PLY THIO	OLUME: 57. CKNESS: 0.0	- 34 wt% 6 - 62.0 vol % 133 - 0.0142 in.	COMP: DE VOID CON	6 - 1.58 g/cm ³	C/Ep 370-5HS AS4/PR 500 Tension, 1-axis [0 _f] ₈ 240/W, 300/W	
TEST ME	ETHOD:		MODULU	S CALCULATIO	N:	Interim, Screening
SRI	M 4R-94		Chord	between 1000	and 3000 με	
NORMAL	LIZED BY: Spe			er areal weight t	o 57% fiber vol	ume (0.0145 in. CPT)
Tempera		24		30		
	Content (%) Im at T, RH	(2 160°F		(2 160°F		
Source C		100 F		6 100 F		
000100 0	.000	Normalized	Measured	Normalized	Measured	Normalized Measured
	Mean	109	114	102	110	
	Minimum	98.0	104	98.1	102	
	Maximum	118	120	110	116	
	C.V.(%)	5.65	4.13	2.81	3.46	
	B-value	(1)	(1)	(1)	(1)	
F_1^{tu}	Distribution	ANOVA	ANOVA	Nonpara.	Weibull	
(ksi)	C ₁	6.82	5.05	8	112	
(131)	C_2	4.98	4.32	1.43	35.4	
			_		_	
	No. Specimens No. Batches	1		1		
	Data Class	Inte		Inte		
	Mean	9.42	9.84	9.24	9.96	
	Minimum	9.04	9.45	8.69	9.20	
	Maximum	9.82	10.5	9.60	10.5	
E_1^t	C.V.(%)	2.47	3.11	2.60	3.62	
(Msi)	No. Specimens	1	5	1	5	
(MOI)	No. Batches	3		3		
	Data Class	Inte	rim	Inte	rim	
v_{12}^{t}	Mean No. Specimens No. Batches					
12	Data Class					
	Mean		11200		11000	
	Minimum		10400		10100	
	Maximum		13500		12000	
	C.V.(%)		7.43		4.38	
	B-value		(1)		(1)	
$arepsilon_1^{ ext{tu}}$	Distribution		Nonpara.		Weibull	
(με)	C ₁		7		11300	
<u> </u>	C ₂		1.81		23.7	
	No. Specimens	1:	2	1	5	
	No. Batches	3		3		
	Data Class	Scree		Inte		

Basis values are presented only for A and B data classes.
 Held in 160°F water bath until full saturation or 95% of equilibrium once full saturation was established.

MATERIA	AL: AS4	6k/PR 500 RTM	15-harness sa	tin weave fabric		Table 4	.2.26(d)
	ONTENT: 30 - DLUME: 56.5	35 wt% - 61.8 vol % 34 - 0.0146 in.	COMP: DE VOID CON	ENSITY: 1.55	- 1.58 g/cm ³	C/Ep 370-5HS AS4/PR 500 Compression, 1-axis [0 _f] _{3s} 72/A, -75/A, 180/A	
TEST ME	THOD:		MODULUS	S CALCULATIO	N:		erim
SRM	/I 1R-94		Chord	between 1000 a	and 3000 µε		
	-			er areal weight to		ume (0.0145 in.	CPT)
	ture (°F) Content (%) m at T, RH	72 ambi		-7: ambi		18 amb	
Source C		61		61		6	1
		Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean Minimum Maximum C.V.(%)	118 103 136 7.91	127 110 141 7.41			105 92.1 116 5.86	110 94.4 126 7.02
F ₁ ^{cu}	B-value Distribution	(1) ANOVA	(1) Weibull			(1) Weibull	(1) Weibull
(ksi)	C ₁ C ₂	9.99 3.81	131 16.1			108 19.8	114 15.8
	No. Specimens No. Batches Data Class		17 3 Interim				5 rim
E ₁ ^c	Mean Minimum Maximum C.V.(%)	8.88 8.30 9.41 3.16	8.95 8.28 9.86 5.41	8.85 8.19 9.30 3.09	8.90 8.10 9.72 4.71	8.99 8.69 9.30 2.16	9.00 7.99 9.48 5.08
(Msi)	No. Specimens No. Batches Data Class	17 3 Inter		15 3 Interim		15 3 Interim	
v_{12}^{c}	Mean No. Specimens No. Batches						
	Data Class Mean Minimum Maximum C.V.(%)						
$\varepsilon_1^{ m cu}$	B-value Distribution						
(με)	C ₁ C ₂						
	No. Specimens No. Batches Data Class						

MATERIA	AL: AS4	6k/PR 500 RTN	1 5-harness sa	tin weave fabric		Table 4	.2.26(e)
FIBER V PLY THI	OLUME: 56.5 CKNESS: 0.01	35 wt% - 61.8 vol % 34 - 0.0146 in.	COMP: DE VOID CON	ITENT: NA	5 - 1.58 g/cm ³	C/Ep 370-5HS AS4/PR 500 Compression, 1-axis [0 ₇] _{3s} 240/A, 300/A, 350/A Interim, Screening	
TEST ME				S CALCULATIO		interim, s	screening
SKI	M 1R-94	and 3000 με					
	-			er areal weight to			-
	ture (°F) Content (%) ım at T, RH	24 amb		30 ambi		35 ambi	
Source C		6	1	61	I	61	1
		Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean	103	106	80.1	84.2	51.0	53.5
	Minimum	98.2	99.5	69.5	71.2	42.2	44.4
	Maximum	110	114	87.5	93.0	61.6	64.8
	C.V.(%)	3.36	4.37	6.69	7.31	9.72	10.6
F ₁ ^{cu}	B-value Distribution	(1) Weibull	(1) ANOVA	(1) Weibull	(1) ANOVA	(1) Weibull	(1) ANOVA
(ksi)	C ₁ C ₂	104 29.3	4.94 4.14	82.5 18.0	6.68 4.18	53.3 10.7	6.10 4.30
	No. Specimens No. Batches Data Class	15 3 Interim		16 3 Inter		12 3 Screening	
E_1^c	Mean Minimum Maximum C.V.(%)						
(Msi)	No. Specimens No. Batches Data Class						
v_{12}^{c}	Mean No. Specimens No. Batches						
	Data Class Mean Minimum Maximum C.V.(%)						
$\varepsilon_1^{ m cu}$	B-value Distribution						
ε ₁ (με)	C ₁ C ₂						
	No. Specimens No. Batches Data Class						

MATERIA	AL: AS4	6k/PR 500 RTM	1 5-harness sa	tin weave fabric	;		4.2.26(f) 70-5HS
FIBER V	OLUME: 56.5	35 wt% - 61.8 vol % 34 - 0.0146 in.	COMP: DE VOID CON		5 - 1.58 g/cm ³	AS4/PR 500 Compression, 1-axis [0 _f] _{3s} 180/W, 240/W, 300/W	
TEST ME	ETHOD:		MODULUS	S CALCULATIO	N:		Screening
SR	M 1R-94		between 1000 a	and 3000 με			
	·	cimen thickness	and batch fibe	er areal weight to	o 57% fiber vol	ume (0.0145 in.	CPT)
	Content (%) Im at T, RH	18 (2 160°F 6 [.]	:) water	24 (2 160°F 6 ⁷	:) water	30 (2 160°F 6	!) water
		Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean Minimum Maximum C.V.(%)	100 87.9 114 7.08	106 87.7 126 10.2	77.5 67.4 87.1 8.97	79.3 66.1 93.4 12.3	67.0 62.2 71.6 4.43	71.7 65.5 78.2 6.05
F ₁ ^{cu}	B-value Distribution	(1) ANOVA	(1) ANOVA	(1) Normal	(1) ANOVA	(1) ANOVA	(1) ANOVA
(ksi)	$C_1 \\ C_2$	7.53 3.67	12.3 4.89	77.5 6.95	11.9 16.8	3.33 11.7	5.33 16.2
	No. Specimens No. Batches Data Class	17 3 Interim		9 2 Scree		11 2 Screening	
E_1^c	Mean Minimum Maximum C.V.(%)						
(Msi)	No. Specimens No. Batches Data Class						
v_{12}^{c}	Mean No. Specimens No. Batches						
	Data Class Mean Minimum Maximum C.V.(%)						
$\varepsilon_1^{ m cu}$	B-value Distribution						
(με)	C ₁ C ₂						
	No. Specimens No. Batches Data Class						

Basis values are presented only for A and B data classes.
 Held in 160°F water bath until full saturation or 95% of equilibrium once full saturation was established.

MATERIA	L:	AS4 6k/F	PR 500 RTM 5-	harness satin weave	e fabric		e 4.2.26(g)	
RESIN CONTENT: 29 - 35 w FIBER VOLUME: 56.0 - 63 PLY THICKNESS: 0.0130 -				COMP: DENSITY: 1.55 - 1.59 g/cm ³ VOID CONTENT: NA			C/Ep 370-5HS AS4/PR 500 Shear, 12-plane [45 _f] _{2s} 72/A, -75/A, 180/A, 240/A, 300/A	
TEST ME	THOD:			MODULUS CALCU		n, Screening		
SRM	7R-94			Chord axial mo	dulus between 10	00 and 4000 με		
NORMALI	ZED BY:	Not norm	alized					
	ure (°F) Content (%) n at T, RH		72 ambient	-75 ambient	180 ambient	240 ambient	300 ambient	
Source Co			61	61	61	61	61	
	Mean		14.8	15.4	13.5	11.5	9.25	
	Minimum		13.0	14.5	12.6	10.7	7.97	
	Maximum	ו	18.2	18.0	14.4	13.1	10.3	
	C.V.(%)		8.63	5.50	4.15	5.37	7.28	
F ₁₂ ^s	B-value Distributio	on	(1) Normal	(1) Nonpara	(1) ANOVA	(1) Normal	(1) Weibull	
(ksi)	C ₁		14.8	8	0.632	11.5	9.55	
()	C ₂		1.28	1.54	5.37	0.618	15.6	
	No. Spec No. Batch		16 3	15 3	14 3	15 3	16 3	
	Data Clas		Interim	Interim	Screening	Interim	Interim	
	Mean		0.639	0.838	0.513	0.432	0.361	
	Minimum		0.585	0.795	0.451	0.388	0.331	
	Maximum	า	0.703	0.893	0.593	0.505	0.381	
G ^s ₁₂	C.V.(%)		6.56	4.28	7.17	7.56	3.92	
(Msi)	No. Spec	imens	16	15	14	15	16	
	No. Batch		3	3	3	3	3	
	Data Clas	SS	Interim	Interim	Screening	Interim	Interim	

MATERIA	L:	AS4 6k/F	PR 500 RTM 5-h	arness satin weave	e fabric	Ta	ble 4.2.26(h) ⁄Ep 370-5HS
RESIN CO FIBER VO PLY THIC	DLUME:	29 - 35 w 56.0 - 63 0.0130 -	•			rm ³ A Sh	Ep 370-565 NS4/PR 500 ear, 12-plane [45 _f] _{2s} , 180/W, 240/W, 300/W
TEST ME	THOD:			MODULUS CALCU	JLATION:	Inter	im, Screening
SRM	7R-94			Chord axial mo	dulus between 10	000 and 4000 µ	3.
NORMAL	IZED BY:	Not norm	nalized				
Temperat			350		180	240	300
Equilibriur	Content (%) n at T, RH		ambient		(2) 160°F water	(2) 160°F water	
Source Co	ode Mean		61 7.75		61 12.2	61 10.2	<u>61</u> 7.82
	Minimum		7.37		12.2	9.61	7.03
	Maximum		8.15		13.0	11.4	8.45
	C.V.(%)		4.36		4.76	4.78	6.35
F ^s ₁₂	B-value Distributic	n	(1) Normal		(1) ANOVA	(1) ANOVA	(1) Weibull
(ksi)	C ₁		7.75		0.656	0.529	8.04
()	C ₂		0.338		5.36	4.62	19.6
	No. Speci No. Batch		8 2		15 3	14 3	11 3
	Data Clas		Screening		Interim	Screening	Screening
	Mean		0.252		0.506	0.400	0.235
	Minimum		0.216		0.450	0.352	0.190
	Maximum		0.264		0.577	0.450	0.274
G_{12}^s	C.V.(%)		6.02		5.80	6.95	12.0
(Msi)	No. Speci		8		15	14	11
	No. Batch Data Clas		2 Screening		3 Interim	3 Screening	3 Screening
		-					

(1) Basis values are presented only for A and B data classes.
(2) Held in 160°F water bath until full saturation or 95% of equilibrium once full saturation was established.

MATERIA	L:	AS4 6k/F	PR 500 RTM 5-h	arness satin weave	fabric		ble 4.2.26(i) Ep 370-5HS
RESIN CO FIBER VC PLY THIC	DLUME:	29 - 35 w 56.0 - 63 0.0130 -		cm ³ A She	EP 370-368 S4/PR 500 ear, 12-plane [45 _f] _{2s} 72/Fluids		
TEST ME	THOD:			MODULUS CALCU	LATION:	5	Screening
SRM	7R-94			Chord axial mod	dulus between 10	000 and 3000 μ	ε
NORMALI	IZED BY:	Not norm	nalized				
Temperati	ure (°F)		72	72	72	72	
Moisture C	Content (%)		(2)	(3)	(4)	(5)	
•	n at T, RH						
Source Co			61	61	61	61	
	Mean		13.5	14.6	15.0	14.8	
	Minimum		12.4	13.4	13.5	13.7	
	Maximun	n	14.9	16.7	16.7	15.8	
	C.V.(%)		6.46	8.44	8.41	6.88	
	B-value		(1)	(1)	(1)	(1)	
E ^S	Distributi	on	Normal	Normal	Normal	Normal	
F_{12}^{s}			13.5	14.6	15.0	14.8	
(ksi)	C1 C2		0.872	14.6	1.26	14.8	
	\mathbf{U}_2		0.072	1.20	1.20	1.02	
	No. Spec	imens	7	7	6	6	
	No. Batcl		1	1	1	1	
	Data Cla	SS	Screening	Screening	Screening	Screening	
	Mean		0.601	0.678	0.651	0.666	
	Minimum		0.560	0.639	0.633	0.650	
	Maximun	n	0.638	0.716	0.677	0.701	
G_{12}^s	C.V.(%)		5.65	4.45	2.64	2.77	
(Msi)	No. Spec	imens	7	7	6	6	
. /	No. Batcl	hes	1	1	1	1	
	Data Cla	SS	Screening	Screening	Screening	Screening	

(1) Basis values are presented only for A and B data classes.

(2) Held for 6 days at room temperature in MEK cleaning solvent.

(3) Held for 6 days at 160°F in Skydrol hydraulic fluid.

(4) Held for 6 days at room temperature in JP-4 jet fuel.

(5) Held for 6 days at room temperature in deicing fluid.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	MATERIA	L:	AS4 6k/F	PR 500 RTM 5-ha	arness satin weave	e fabric	Tab C/E	le 4.2.26(j)
TEST METHOD: MODULUS CALCULATION: Screening SRM 8R-94 Chord axial modulus between 1000 and 3000 $\mu\epsilon$ NORMALIZED BY: Not normalized Temperature (°F) 72 180 300 180 30 Moisture Content (%) ambient ambient 160°F water 160°F water 160°F water 160°F Source Code 61 61 61 61 6 3 6 6 6 6 <t< th=""><th>FIBER VC</th><th>DLUME:</th><th>57.6 - 62</th><th>.0 vol %</th><th></th><th>2003 Cm³ AS SBS 72/A, 7</th><th>4/PR 500 5, 31-plane [0_f]_{3s} 180/A, 300/A,</th></t<>	FIBER VC	DLUME:	57.6 - 62	.0 vol %		2003 Cm ³ AS SBS 72/A, 7	4/PR 500 5, 31-plane [0 _f] _{3s} 180/A, 300/A,	
NORMALIZED BY: Not normalized Temperature (°F) Moisture Content (%) Equilibrium at T, RH Source Code 72 ambient 180 ambient 300 ambient 180 (2) (60°F water 300 (2) (60°F water 160°F water Mean 11.6 9.6 6.8 8.0 5.4 Minimum 10.4 9.0 6.5 7.2 5.4 Maximum 12.7 10.2 7.3 8.4 5.4 C.V.(%) 5.36 3.4 3.2 4.6 3.4 F ^{sbs} ₃₁ B-value (1) (1) (1) (1) (1) (1) (ksi) C1 11.9 0.35 6.8 8.1 5.4 (ksi) C1 11.9 0.35 0.22 30. 0.7 No. Specimens 19 19 19 19 12 7	TEST ME	THOD:	JLATION:					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SRM	8R-94			Chord axial mo	dulus between 10	000 and 3000 με	
$\begin{array}{c cccccccccccc} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	NORMALI	IZED BY:	Not norm	alized				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								300
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				ambient	ambient	ambient		(2)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				61	61	61		160°F water
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Source CC							61 5.47
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1					5.2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								5.7
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								3.3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		B-value		(1)	(1)	(1)	(1)	(1)
(ksi) C1 11.9 0.35 6.8 8.1 5. C2 22.2 3.5 0.22 30. 0.5 No. Specimens 19 19 19 12 7 No. Batches 3 3 3 2 1	F_{31}^{sbs}	Distributi	on	Weibull	ANOVA	Normal	Weibull	Normal
C2 22.2 3.5 0.22 30. 0. No. Specimens 19 19 19 12 7 No. Batches 3 3 3 2 7		C ₁		11.9	0.35	6.8	8.1	5.5
No. Batches 3 3 3 2 1		C ₂		22.2	3.5	0.22	30.	0.18
								7
Data Class Screening Screening Screening Screening Screening Image: Screening Screening Screening Screening Screening Screening								1
		Data Cla	SS	Screening	Screening	Screening	Screening	Screening

Short beam strength test data are approved for Screening Data Class only.
 Held in 160°F water bath until full saturation or 95% of equilibrium once full saturation was established.

MATERIA	AL: AS4	6k/PR 500 RTM	l 5-harness sa	tin weave fabric	:		l.2.26(k) 70-5HS
RESIN C FIBER VO PLY THIO	OLUME: 55.5	36 wt% - 64.8 vol % 28 - 0.0149 in.	AS4/F OHT, [0 _f /45 _f /9	AS4/PR 500 OHT, x-axis [0 _f /45 _f /90 _f /-45 _f] _s 72/A, -75/A, 180/A			
TEST ME	THOD:			Screening			
SRI	VI 5R-94		Chord	between 1000 a	and 3000 µɛ		
NORMAL	IZED BY: Spe	cimen thickness	and batch fibe	er areal weight to	o 57% fiber vol	ume (0.0145 in	CPT)
Tempera		72		-7		18	
	Content (%)	ambi	ent	ambi	ient	amb	ient
Equilibrium at T, RH Source Code		61		61	1	6	1
		Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean	47.5	49.4	47.7	49.9	46.9	48.3
	Minimum	42.5	41.7	41.7	40.6	43.8	44.9
	Maximum C.V.(%)	51.5 5.49	54.0 7.03	51.6 5.73	54.8 7.82	48.8 3.46	51.5 4.66
	0. v.(70)	0.40	7.00	0.75	7.02	0.40	4.00
	B-value	(1)	(1)	(1)	(1)	(1)	(1)
F_x^{ohtu}	Distribution	Weibull	Weibull	Weibull	Weibull	ANOVA	ANOVA
(ksi)	C ₁	48.7	51.0	48.8	51.5	1.69	2.20
	C ₂	21.8	17.6	22.6	17.6	3.61	3.81
	No. Specimens	15	5	15	5	1	5
	No. Batches	3		3		3	
	Data Class	Inter		Inter 7.25		Inte	
	Mean Minimum	6.86 6.72	7.24 7.09	7.08	7.77 7.63	6.75 6.55	7.04 6.71
	Maximum	7.07	7.41	7.34	7.94	7.14	7.45
E_x^{oht}	C.V.(%)	1.94	1.59	1.42	1.90	3.26	3.48
(Msi)	No. Specimens	5		5		6	
	No. Batches	1		1		1	
	Data Class	Scree		Scree		Scree	
	Mean Minimum		7100 6500		6700 6600		7100 6800
	Maximum		7500		7000		7400
	C.V.(%)		5.7		2.5		3.8
ohtu	B-value		(1) Normal		(1) Normal		(1) Normal
$\varepsilon_{\mathrm{x}}^{\mathrm{ohtu}}$	Distribution		Normal		Normal		Normal
(με)	C ₁		7100		6700		7100
	C ₂		400		170		270
	No. Specimens	5		5		5	
	No. Batches	1		1		1	
	Data Class	Scree	nıng	Scree	ening	Scree	ening

N N	UME: 55.5 NESS: 0.012 HOD: ;R-94 ED BY: Spec e (°F) ontent (%) at T, RH	36 wt% - 64.8 vol % 28 - 0.0149 in. imen thickness 24(ambi 61 Normalized 48.6 45.4	Chord and batch fibe 0 ent		and 3000 με ο 57% fiber vol 0	AŠ4/F OHT, [0;/45;/9 240/A, 300 Interim, S	0
SRM 5 NORMALIZE Temperature Moisture Cou Equilibrium a Source Code	SR-94 ED BY: Spec e (°F) ontent (%) at T, RH e Mean Minimum Maximum	24(ambi 61 Normalized 48.6	Chord and batch fibe 0 ent	between 1000 a er areal weight to 30 amb	and 3000 με ο 57% fiber vol 0	Interim, S ume (0.0145 in. 35	CPT)
NORMALIZE Temperature Moisture Con Equilibrium a Source Code M	ED BY: Spec e (°F) ontent (%) at T, RH e Mean Minimum Maximum	24(ambi 61 Normalized 48.6	and batch fibe 0 ent	er areal weight to 30 amb	o 57% fiber vol 0	35	0
Temperature Moisture Cor Equilibrium a Source Code N N	e (°F) ontent (%) at T, RH e Mean Minimum Maximum	24(ambi 61 Normalized 48.6	0 ent	30 amb	0	35	0
Moisture Col Equilibrium a Source Code N N N	ontent (%) at T, RH e Mean Minimum Maximum	ambi 61 Normalized 48.6	ent	amb			
Equilibrium a Source Code M N N	at T, RH e Mean Minimum Maximum	61 Normalized 48.6			ient	ambi	ient
Source Code N N N	e Mean Minimum Maximum	Normalized 48.6		6			
N N	Minimum Maximum	48.6	Measured		1	61	1
N N	Minimum Maximum			Normalized	Measured	Normalized	Measured
Ν	Maximum	45.4	51.2	47.5	49.7	44.1	45.4
			47.8	45.9	46.6	41.6	41.4
		52.8 3.89	56.1 4.96	51.2 3.20	53.3 4.11	46.7 3.61	48.4 3.86
_							
	B-value Distribution	(1) Weibull	(1) Normal	(1) Nonpara.	(1) Weibull	(1) ANOVA	(1) Weibull
(ksi) C	C ₁ C ₂	49.5 25.6	51.2 2.54	8 1.49	50.7 26.1	1.70 3.84	46.3 29.3
No. Specimens No. Batches Data Class		16 3 Interim		16 3 Inte		16 3 Inte	
	Mean	6.58	6.96	6.64	7.02	6.01	6.28
Ν	Minimum	6.42	6.70	6.52	6.74	5.85	6.08
	Maximum C.V.(%)	6.78 2.10	7.20 2.82	6.87 1.84	7.12 2.03	6.33 3.14	6.52 2.56
	No. Specimens	6		6		6	
	No. Batches	1		1		1	
	Data Class Mean	Scree	ning 7500	Scree	ning 7200	Scree	ning 7300
	Minimum		7000		7000		7000
	Maximum		7800		7300		7700
C	C.V.(%)		3.7		1.8		3.6
	B-value Distribution		(1) Normal		(1) Normal		(1) Normal
	C ₁		7500		7200		7300
()	C ₂		270		130		260
	No. Specimens No. Batches	6 1		6		6	
	Data Class	Scree	nina	Scree		Scree	

MATERIA	AL: AS4	6k/PR 500 RTM	l 5-harness sa	tin weave fabric	:		.2.26(m) 370-5HS			
RESIN C FIBER VO PLY THIO	OLUME: 55.5	36 wt% - 64.8 vol % 28 - 0.0149 in.	AS4/F OHT, [0 _f /45 _f /9	AS4/PR 500 OHT, x-axis [0 _f /45 _f /90 _f /-45 _f] _s 180/W, 240/W, 300/W						
TEST ME	THOD:		MODULUS	S CALCULATIO	N:		n, Screening			
SR	M 5R-94	Chord between 1000 and 3000 με								
NORMAL	IZED BY: Spe	cimen thickness	and batch fibe	er areal weight to	o 57% fiber vol	ume (0.0145 in.	. CPT)			
Tempera		18		24		30				
	Content (%)	(2)		(2	()	(2	2)			
	m at T, RH	160°F		160°F		160°F				
Source C	ode	61 Normalized	Measured	6 ² Normalized	Measured	6 Normalized	Measured			
	Mean	47.1	49.3	46.4	48.6	46.5	48.6			
	Minimum	43.1	44.2	43.7	46.0	44.4	45.7			
	Maximum	50.0	53.6	49.4	53.4	50.1	52.3			
	C.V.(%)	3.81	5.13	3.57	4.44	3.57	6.05			
F _x ^{ohtu}	B-value Distribution	(1) Weibull	(1) Weibull	(1) Weibull	(1) Nonpara.	41.9 Weibull	43.6 Weibull			
г _х (ksi)	C ₁	47.9	50.4	47.2	8	28.1	26.8			
()	C_2	29.6	22.0	31.0	1.49	47.3	49.6			
	No. Specimens	16		16		2				
	No. Batches Data Class	Interim		Interim		B1				
	Mean	6.69	7.08	7.00	7.46	6.64	6.96			
	Minimum	6.58	6.77	6.78	7.07	5.95	6.15			
aht	Maximum	6.80	7.43	7.24	7.70	7.01	7.54			
E_x^{oht}	C.V.(%)	1.63	3.44	2.96	3.74	4.92	5.93			
(Msi)	No. Specimens	6		6		1				
	No. Batches Data Class	1 Scree	nina	1 Scree		3 Inte				
	Mean	30100	7100	30100	6600	inte	6900			
	Minimum		6800		6100		6000			
	Maximum		7200		7100		7800			
	C.V.(%)		2.2		6.5		6.1			
$arepsilon_{\mathrm{x}}^{\mathrm{ohtu}}$	B-value Distribution		(1) Normal		(1) Normal		5800 Weibull			
	C ₁		7100		6600		7100			
(με)	C_1 C_2		150		430		17			
	No. Specimens	6		6		1				
	No. Batches	1		1		3				
	Data Class	Scree	nıng	Scree	ening	B1	۱ð			

(1) Basis values are presented only for A and B data classes.
(2) Held in 160°F water bath until full saturation or 95% of equilibrium once full saturation was established.

MATERIA	AL: AS4	6k/PR 500 RTM	l 5-harness sa	tin weave fabric	;		1.2.26(n)
RESIN C FIBER VO PLY THIO	OLUME: 55.5	36 wt% - 64.8 vol % 28 - 0.0149 in.	OHC, [0 _f /45 _f /9	AS4/PR 500 OHC, x-axis [0 _f /45 _f /90 _f /-45 _f]s 72/A,180/A,240/A			
TEST ME	THOD:			n, Screening			
SRM	/I 5R-94		Chord	between 1000 a	and 3000 με		
NORMAL	IZED BY: Spe	cimen thickness	and batch fibe	er areal weight to	o 57% fiber vol	ume (0.0145 in	CPT)
Temperat		72		18		24	
	Content (%) m at T, RH	ambi	ent	amb	ient	amb	ient
Source C		61		6	1	6	1
		Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean	45.3	47.2	38.2	40.4	35.6	37.9
	Minimum	42.7	44.7	34.8	37.0	32.2	33.9
	Maximum C.V.(%)	48.2 3.57	51.4 4.17	44.1 6.32	47.3 6.93	37.9 4.22	41.0 4.38
	B-value Distribution	41.0 Weibull	41.5 Weibull	(1) Weibull	(1) Normal	(1) Weibull	(1) Weibull
F _x ^{ohcu} (ksi)	C ₁	46.1	48.1	39.4	40.4	36.2	38.6
(KSI)	C_1 C_2	30.7	24.0	15.1	2.80	29.6	26.7
	No. Specimens No. Batches Data Class	18 3 B18		3	16 3 Interim		6 3 rim
	Mean	6.67	7.10	6.48	6.94	6.43	6.85
	Minimum	6.28	6.67	6.44	6.78	6.24	6.34
r ohc	Maximum C.V.(%)	7.08 4.47	7.59 5.02	6.52 0.549	7.05 1.44	6.70 1.87	7.32 4.35
E_x^{ohc}	0. v.(70)		0.02	0.040	1.77	1.07	4.00
(Msi)	No. Specimens	8		5		1	
	No. Batches Data Class	1 Scree	nina	1 Scree		3 Scree	
	Mean		6900		6100		5500
	Minimum		6500		5400		5100
	Maximum		7500		6800		6000
	C.V.(%)		5.7		9.7		4.6
$\varepsilon_{\rm x}^{\rm ohcu}$	B-value Distribution		(1) Normal		(1) Normal		(1) Weibull
(με)	C ₁		6900		6100		5700
(1-0)	C ₂		390		590		24
	No. Specimens	5		5		1	
	No. Batches Data Class	1 Scree	nina	1 Scree		3 Scree	
		00166	iniy	00166	, ing	00100	Jung

MATERIA	AL: AS4	6k/PR 500 RTM	15-harness sa	tin weave fabri	0		4.2.26(o) 370-5HS
FIBER V	OLUME: 55.5	36 wt% - 64.8 vol % 28 - 0.0149 in.	64.8 vol % VOID CONTENT: NA				PR 500 x-axis 90 _f /-45 _f] _s 90/A
TEST ME	THOD:		MODULUS	S CALCULATIC	N:		erim
SRI	VI 5R-94		Chord	between 1000	and 3000 με		
NORMAL	IZED BY: Spe	cimen thickness	and batch FA	W to 57% fiber	volume (0.0145	5 in. CPT)	
Tempera		30					
	Content (%)	ambi	ent				
Source C	im at T, RH Code	61					
		Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean	32.1	34.0				
	Minimum Maximum	26.2 36.6	28.9 38.6				
	C.V.(%)	7.92	7.41				
rohcu	B-value Distribution	(1) Weibull	(1) Weibull				
F _x ^{ohcu} (ksi)	C ₁	33.2	35.1				
(KSI)	C_2	15.7	14.9				
	No. Specimens No. Batches	17 3					
	Data Class Mean	Inter 6.24	6.60				
	Minimum	6.02	6.19				
1	Maximum	6.38	7.24				
E_x^{ohc}	C.V.(%)	1.73	4.13				
(Msi)	No. Specimens	17					
	No. Batches Data Class	3 Inter					
	Mean	Inter	5100				
	Minimum		4300				
	Maximum		5700				
	C.V.(%)		7.6				
-1	B-value		(1)				
$\varepsilon_{\rm x}^{\rm ohcu}$	Distribution		Weibull				
(με)	C ₁		5300				
	C ₂		17				
	No. Specimens	17					
	No. Batches	3					
	Data Class	Inter	rim				

MATERIA	AL: AS4	6k/PR 500 RTM	15-harness sa	tin weave fabric	;	Table 4	.2.26(p)
	ONTENT: 28 - DLUME: 55.5 CKNESS: 0.01	- 36 wt% COMP: DENSITY: 1.55 - 1.60 g/cm ³ 5 - 64.8 vol % VOID CONTENT: NA 128 - 0.0149 in. MODULUS CALCULATION:				C/Ep 3 AS4/F OHC, [0 _f /45 _f /9 180/W, 240	70-5HS YR 500 x-axis 00 _f /-45 _f] _s D/W, 300/W h, Screening
SRM	/I 5R-94		Chord	between 1000 a	and 3000 με		
NORMAL	IZED BY: Spec	cimen thickness	and batch fibe	er areal weight to	o 57% fiber vol	ume (0.0145 in.	CPT)
Temperat		18		24		30	
	Content (%)	(2)	(2	2)	(2	
Source C	m at T, RH	160°F		160°F		160°F	
Source C	ode	61 Normalized	Measured	6 Normalized	Measured	6' Normalized	Measured
	Mean	36.3	38.5	32.8	34.6	27.1	28.4
	Minimum	32.2	34.5	30.3	31.8	25.0	26.1
	Maximum	40.9	44.2	36.5	38.4	30.2	32.1
	C.V.(%)	7.01	7.02	5.76	6.39	6.35	6.52
F _x ^{ohcu}	B-value Distribution	(1) Weibull	(1) ANOVA	(1) Weibull	(1) Weibull	25.4 Nonpara.	23.5 Weibull
(ksi)	C ₁	37.5	2.90	33.7	35.7	9	29.3
	C ₂	16.1	3.97	18.2	17.2	1.35	16.4
	No. Specimens No. Batches Data Class	16 3 Interim		1 3 Inte	3	18 3 B1	
	Mean	6.39	6.90	6.45	6.83	6.10	6.40
	Minimum	6.29	6.56	6.22	6.49	5.84	5.78
	Maximum	6.53	7.13	7.05	7.46	6.45	6.87
E _x ^{ohc}	C.V.(%)	1.69	2.89	3.54	4.03	2.64	4.57
(Msi)	No. Specimens	6		1:		15	
	No. Batches	1	ning	3 Inte		3 Into	
	Data Class Mean	Scree	5800	inte	5100	Inte	4500
	Minimum		5400		4500		4100
	Maximum		6500		5800		4900
	C.V.(%)		7.0		7.2		5.4
$\varepsilon_{\rm x}^{ m ohcu}$	B-value Distribution		(1) Normal		(1) Weibull		(1) Weibull
(με)	C ₁		5800		5300		4600
(µc)	C ₂		410		15		20
	No. Specimens	6		1:	5	15	
	No. Batches	1		3	3	3	
	Data Class	Scree	ning	Inte	rim	Inte	rim

(1) Basis values are presented only for A and B data classes.
(2) Held in 160°F water bath until full saturation or 95% of equilibrium once full saturation was established.

MATERIA	<u> </u>	AS4 6k/PR 500 F	RTM 5-harness sa	tin weave fabri	<u></u>	Table 4	.2.26(q)			
	ONTENT: 3	30 - 33 wt% 58.5 - 62.4 vol % 0.0133 - 0.0141 i	COMP: DE VOID CON	C/Ep 3 AS4/F CAI, 2 [0 _f /45 _f /9	70-5HS PR 500 x-axis 0 _f /-45 _f] _{2s} Impact					
TEST ME				S CALCULATIC	DN:		erim			
	-	energy (see footr	·							
NORMALIZED BY: Specimen thickness and batch FAW to 57% fiber volume (0.0145 in. CPT)										
	Content (%) m at T, RH	а	72 mbient (2) 61	amb	2 bient 3) 1	7: amb (4 6 ⁻	ient)			
		Normalized		Normalized	Measured	Normalized	Measured			
	Mean Minimum Maximum C.V.(%)	60.5 55.6 67.2 5.33	64.3 59.1 71.7 5.42	43.1 40.6 45.3 3.31	45.8 42.4 48.6 4.23	39.5 35.5 45.7 6.32	41.9 39.0 47.6 5.47			
F _x ^{cai}	B-value Distribution	(1) Weibull	(1) Weibull	(1) ANOVA	(1) ANOVA	(1) ANOVA	(1) ANOVA			
(ksi)	C ₁ C ₂	62.0 19.6	66.0 18.9	1.58 4.98	2.17 5.26	2.64 3.99	2.45 4.18			
	No. Specime No. Batches Data Class		15 3 nterim		5 3 erim	11 3 Inte	ł			

Basis values are presented only for A and B data classes.
 Impact energy: 135 in-lbs.
 Impact energy: 270 in-lbs.
 Impact energy: 360 in-lbs.

MATERIA	AL:	AS4 6k/PF	R 500 RTM	1 5-harness sa	tin weave fabric			4.2.26(r)
RESIN C FIBER V(PLY THI(OLUME: 5		- 33 wt% COMP: DENSITY: 1.56 - 1.59 g/cm ³ 5 - 62.4 vol % VOID CONTENT: NA 133 - 0.0141 in.					70-5HS PR 500 x-axis 10f/-45f]2s
TEST ME					S CALCULATIC	DN:		Impact erim
SRM	12R-94, Impact	energy (s	see footno	tes)				
NORMAL	IZED BY: S	Specimen	thickness	and batch FA	N to 57% fiber	volume (0.0145	in. CPT)	
	Content (%) m at T, RH		72 amb (2 61	ient)	7 amb (\$ 6	pient 3)		
			malized	Measured	Normalized	Measured	Normalized	Measured
	Mean Minimum Maximum C.V.(%)		37.2 34.8 40.9 4.61	39.4 36.1 43.7 4.91	35.1 33.0 37.5 4.15	37.4 34.5 39.8 4.26		
F _x cai	B-value Distribution	A	(1) NOVA	(1) ANOVA	(1) ANOVA	(1) ANOVA		
(ksi)	C ₁ C ₂		1.91 5.12	2.11 4.73	1.59 4.65	1.74 4.75		
	No. Specime No. Batches Data Class	ns	15 3 Inte			5 3 erim		

Basis values are presented only for A and B data classes.
 Impact energy: 450 in-lbs.
 Impact energy: 545 in-lbs.

MATERIAL:		AS4 6k/P	R 500 RTM 5-h	arness satin weave	e fabric		e 4.2.26(s)
RESIN CON FIBER VOL PLY THICK	UME:	33 - 34 w 57.3 - 58. 0.0142 - (COMP: DENSITY: /OID CONTENT:	AS G _i	o 370-5HS 4/PR 500 ₅ , x-axis [0 _f] _{6s} 72/A	
	HOD: -276, Sectio Cantilever		r	MODULUS CALCU	JLATION:		reening
NORMALIZ	ED BY:	Not norm	alized				
Temperatur Moisture Co			72 ambient				
Equilibrium Source Cod	at T, RH		61				
200.00 000	Mean		2.63				
	Minimum		1.64				
	Maximum		3.88				
	C.V.(%)		20.1				
	B-value		(1)				
G_{I_c}	Distributio	on	ANOVA				
(in-	C ₁		0.642				
lbs/in ²)	- 1						
,	C ₂		8.30				
	No. Speci	imens	56				
	No. Batch		2				
	Data Clas	s	Screening				

(1) Basis values are presented only for A and B data classes.

(2) Equivalent to ASTM D 5528-94 with 0.5 inch specimen width.

MATERIAL	:	AS4 6k/F	PR 500 RTM 5-	harness satin weav	ve fabric		e 4.2.26(t) o 370-5HS
RESIN CON FIBER VOL PLY THICK	UME:	33 - 34 w 57.3 - 58 0.0142 -		COMP: DENSITY VOID CONTENT:		AS	4/PR 500 _{lc} , x-axis [0 _f] _{6s}
TEST METH	HOD:			MODULUS CALC	ULATION:		72/A B18
	-276, Section otched Flex						
NORMALIZ	ED BY:	Not norm	nalized				
Temperatur	re (°F)		72				
Moisture Co Equilibrium	at T, RH		ambient				
Source Coc			61				
	Mean		7.88				
	Minimum Maximun		6.21 10.8				
	C.V.(%)		13.1				
~	B-value		(1)				
G_{II_c}	Distributi	on	ANOVA				
(in- lbs/in ²)	C ₁		1.20				
,	C ₂		5.02				
	No. Spec		47				
	No. Batc Data Cla		3 B18				
	Data Cia	55	БІО				

(1) B-basis values calculated from less than five batches of data using the ANOVA method are not presented.

4.2.27 T300 3k/EA9396 8-harness satin weave fabric

Material Description:

Material: T300 3k/EA9396

- Form: 8-harness satin fabric of Hexcel weave W133 using 3k tows at 24x23 tows per inch, fiber areal weight of 366 g/m², wet lay-up, typical cured resin content ranged from 31.9 to 37.1%, typical cured ply thickness of 0.015 inches.
- Processing: Vacuum Bag cure; 195°F, 126 mm Hg, 45 minutes

General Supplier Information:

- Fiber: T300 3k fibers are continuous carbon filaments made from PAN precursor, surface treated to improve handling characteristics and structural properties. Filament count is 3,000 filaments per tow. Typical tensile modulus is 33 x 10⁶ psi. Typical tensile strength is 530,000 psi.
- Matrix: EA9396 is a 200°F curing toughened epoxy resin with improved hot/wet properties. 75 minute pot life for 1 lb. batch. This resin is a two part, unfilled version of EA 9394.

Maximum Short Term Service Temperature: 300°F (dry), 180°F (wet)

Typical applications: aircraft repair

Data Analysis Summary:

- 1. This material was tested at fiber volumes that exceed what are typically used for repair. Data should be substantiated if used at lower fiber volumes.
- 2. Elevated temperature, wet properties for compression and shear are low and have increased variability because the material was tested near the glass transition temperature.
- 3. Reported fiber volumes and resin contents are not consistent with the measured ply thicknesses.
- 4. Data are from publicly available report, Reference 4.2.27.

4.2.27 T300 3k/EA 9396 8-harness satin weave fabric*

MATERIAL:	T300 3k/E	A 9396 8-harı	ness satin we	ave fabric		C/Ep 366-8HS T300/EA 9396 Summary
FORM:		n fabric impre regnation pro		epoxy resin in a wet		
FIBER:	Toray T30	0 , 3k, UC 309	9 Sizing	MATRIX:	Dexter-Hysol EA 9396	
T _g (dry):	349°F	T _g (wet):	225°F	T _g METHOD:	DMA	
PROCESSING:	Vacuum B	ag Cure: 195	-200°F, 45 m	in., 25 in. Hg.		

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

Date of fiber manufacture		Date of testing	11/88-5/91
Date of resin manufacture	8/88-10/88	Date of data submittal	3/98
Date of prepreg manufacture	NA	Date of analysis	8/98
Date of composite manufacture	11/88-5/91		

LAMINA PROPERTY SUMMARY

	72°F/A	-65°F/A	200°F/A	-65°F/W	72°F/W	200°F/W
Tension, 1-axis	IISI				IISI	
Tension, 2-axis	SSSS	IISI	IISI	IISI	IISI	IISI
Tension, 3-axis						
Compression, 1-axis	SS-S				II-I	
Compression, 2-axis	SS-S	IS-S	II-I	II-I	II-I	SS-S
Compression, 3-axis						
Shear, 12-plane	II	II	II	II	IS	II
Shear, 23-plane						
Shear, 31-plane						

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.78	1.78	D 792
Resin Density	(g/cm ³)	1.14		
Composite Density	(g/cm ³)	1.45	1.46-1.48	D 792
Fiber Areal Weight	(g/m ²)	366	366	
Fiber Volume	(%)	54	53.7-57.3	D 3171A
Ply Thickness	(in)	0.0142	0.014-0.016	

Nominal composite densities assume void content of 0%.

LAMINATE PROPERTY SUMMARY

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

MATERIA	AL: T300	3k/EA 9396 8-ł	arness satin w	eave fabric		Table 4.2.27(a)
RESIN C FIBER V(PLY THI(OLUME: 56.3-5	34.2 wt% 57.3 % 8-0.0153 in.	COMP. DE VOID CON		8 g/cm ³ 4.8 %	C/Ep 366-8HS T300 3k/EA 9396 Tension, 1-axis [0₁]₅ 72/A,72/W
TEST ME	THOD:		MODULUS	S CALCULATIC	N:	Interim, Screening
AST	M D 3039		Chord	between 1000	and 3000με	
NORMAL	IZED BY: Speci	men thickness	and areal weigh	nt to 57% (0.014	2 in. CPT)	
	Content (%) m at T, RH	Am	72 bient 31	7 (1 140, 9 3) 5-100	
000.000		Normalized	Measured	Normalized	Measured	Normalized Measured
	Mean Minimum Maximum C.V.(%)	88.3 80.2 94.4 5.79	80.6 73.1 86.0 6.39	92.8 84.1 102 5.49	84.9 74.3 91.4 6.00	
F_l^{tu}	B-value Distribution	(2) Weibull	(2) Nonpara.	(2) Weibull	(2) Weibull	
(ksi)	C ₁ C ₂	90.6 22.5	8 1.54	95.1 20.7	87.2 21.1	
	No. Specimens No. Batches Data Class	15 3 Interim		1 3 Inte	3	
	Mean Minimum	9.17 8.68	8.38 7.69	9.68 9.38	8.85 8.44	
$\mathrm{E}_{1}^{\mathrm{t}}$	Maximum C.V.(%)	10.1 3.96	9.22 4.60	10.3 2.43	9.34 2.71	
(Msi)	No. Specimens No. Batches Data Class		15 3		5 }	
	Mean		erim 9587	Inte 0.03		
v_{12}^t	No. Specimens No. Batches		7 3	6	3	
	Data Class	Scre	ening	Scree		
	Mean Minimum Maximum C.V.(%)		7830 5500 9480 14.3		9570 8800 10400 5.34	
ϵ_1^{tu}	B-value Distribution		(2) ANOVA		(2) Weibull	
(με)	C ₁ C ₂		4.64 1220		9800 22.7	
	No. Specimens No. Batches		15 3	1.	3	
	Data Class	Inte	erim	Inte		

Unknown weight gain.
 Basis values are presented only for A and B data classes.

MATERIA	AL: T300	3k/EA 9396 8-h	arness satin w	eave fabric			4.2.27(b)			
FIBER V	OLUME: 56.3-	34.2 wt% COMP. DENSITY: 1.48 g/cm ³ 57.3 % VOID CONTENT: 4.0-4.8 % 8-0.0153 in.				T300 3H Tensio	C/Ep 366-8HS T300 3k/EA 9396 Tension, 2-axis [0 _f] ₈ 72/A, -65/A, 200/A			
TEST ME	THOD:		MODULU	S CALCULATIO	S CALCULATION: Interim, Screening					
AST	M D 3039		Chord	between 1000	and 3000με					
NORMAL	IZED BY: Speci	men thickness a			•					
	ture (°F) Content (%) m at T, RH		72 bient		65 pient		00 pient			
Source C		3	31	3	81	3	1			
		Normalized	Measured	Normalized	Measured	Normalized	Measured			
	Mean Minimum Maximum C.V.(%)	100 80.4 110 9.39	93.0 75.1 101 9.11	93.6 87.0 103 5.19	90.6 82.9 107 6.89	78.9 59.7 94.6 12.4	75.5 57.3 91.7 13.1			
F ₂ ^{tu}	B-value Distribution	(1) Weibull	(1) Weibull	(1) Weibull	(1) Lognormal	(1) ANOVA	(1) ANOVA			
(ksi)	C ₁ C ₂	104 15.2	96.4 16.0	95.9 19.7	4.50 0.0663	4.61 10.6	4.61 10.7			
	No. Specimens No. Batches Data Class	:	14 3 Screening		5 3 erim	15 3 Interim				
E_2^t	Mean Minimum Maximum C.V.(%)	9.10 8.11 9.68 5.12	8.51 7.31 9.44 6.58	9.60 8.97 10.1 3.27	9.29 8.33 10.2 4.66	9.05 8.37 9.67 4.92	8.64 7.75 9.23 5.14			
(Msi)	No. Specimens No. Batches Data Class	:	4 3 ening	:	5 3 erim	:	5 3 erim			
v_{21}^t	Mean No. Specimens No. Batches	0.0	509 9 3	0.0	543 7 3	0.0	575 6 3			
	Data Class	Scre	ening	Scre	ening	Scre	ening			
	Mean Minimum Maximum C.V.(%)		10500 8520 11700 10.3		9580 8850 10600 6.71		8590 6460 10000 10.7			
ϵ_2^{tu}	B-value Distribution		(1) Weibull		(1) ANOVA		(1) Weibull			
(με)	C ₁ C ₂		10900 13.0		4.81 704		8980 11.3			
	No. Specimens No. Batches		4 3		5 3		5 3			
	Data Class		ening		erim		erim			

MATERIA	AL: T300 :	3k/EA 9396 8-h	arness satin w	eave fabric			4.2.27(c)		
RESIN C FIBER V(PLY THI(OLUME: 56.3-5	34.2 wt% COMP. DENSITY: 1.48 g/cm ³ 57.3 % VOID CONTENT: 4.0-4.8 % 8-0.0153 in. 8-0.0153 in. 1.000000000000000000000000000000000000				Tensio [¹	T300 3k/EA 9396 Tension, 2-axis [0 _f] ₈ -65/W, 72/W, 200/W		
TEST ME	THOD:		MODULUS CALCULATION: Interim, Screenir						
AST	M D 3039		Chord	between 1000 a	and 3000µɛ				
	-		_	nt to 57% (0.014					
	Content (%) m at T, RH	(140, 9	65 1) 95-100 31	7: (1 140, 9 3 [:]) 5-100	(<i>*</i> 140, 9	00 1) 95-100 11		
		Normalized	Measured	Normalized	Measured	Normalized	Measured		
	Mean Minimum Maximum C.V.(%)	100 79.4 110 7.40	96.7 80.6 105 6.88	93.3 80.4 101 5.94	87.5 72.0 101 9.29	66.7 60.2 71.9 5.51	64.3 56.7 72.1 6.51		
F_2^{tu}	B-value Distribution	(2) Weibull	(2) Weibull	(2) Weibull	(2) Weibull	(2) Weibull	(2) Normal		
(ksi)	C ₁ C ₂	103 19.1	99.4 20.2	95.7 21.2	91.2 12.1	68.4 22.0	64.3 4.18		
	No. Specimens No. Batches Data Class	15 3 Interim		1: 3 Inte	5	:	6 3 erim		
t	Mean Minimum Maximum C.V.(%)	9.84 9.51 10.1 1.95	9.52 8.91 10.4 3.69	9.32 8.89 9.81 2.83	8.73 8.22 9.63 4.21	8.29 7.29 9.28 7.49	7.98 7.01 9.20 7.73		
E ₂ ^t (Msi)	No. Specimens		5	1			6		
(Mol)	No. Batches Data Class	Inte	3 erim	3 Inte	s rim	: Inte	3 erim		
ν_{21}^t	Mean No. Specimens No. Batches		535 6 3	0.04 6 3	5	1	497 0 3		
	Data Class	Scre	ening	Scree		Scre	ening		
	Mean Minimum Maximum C.V.(%)		9830 7210 11000 10.5		10000 8390 11700 8.61		7370 3070 9520 23.5		
ϵ_2^{tu}	B-value Distribution		(2) Weibull		(2) Weibull		(2) Weibull		
(με)	C ₁ C ₂		10200 14.4		10400 12.5		8000 5.72		
	No. Specimens No. Batches		5	15	5	:	6 3		
	Data Class	Inte	erim	Inte	rım	Inte	erim		

Unknown weight gain.
 Basis values are presented only for A and B data classes.

MATERI	AL: T300) 3k/EA 9396 8-h	arness satin we	eave fabric		Table 4.2.27(d) C/Ep 366-8HS
FIBER V	OLUME: 53.7	-37.1 wt% -55.5 % 47-0.0152 in.	COMP. DE VOID CON	T300 3k/EA 9396 Compression, 1-axis [0 _f] ₁₂ 72/A,72/W		
TEST ME	ETHOD:		MODULUS	S CALCULATIC	N:	Interim, Screening
AST	M D 3410B		Chord	between 1000	and 3000με	
	·	cimen thickness a		C C		Т)
Equilibriu	Content (%) ım at T, RH	Aml	2 pient	7 2.18- (1	2.43)	
Source C	Code	-	31	3		
	• • •	Normalized	Measured	Normalized	Measured	Normalized Measured
	Mean Minimum Maximum C.V.(%)	75.0 60.1 84.1 8.48	69.9 56.4 78.5 8.22	58.0 47.4 72.9 11.9	53.9 42.3 65.4 11.1	
F _l ^{cu}	B-value Distribution	(2) Weibull	(2) Weibull	(2) Weibull	(2) ANOVA	
(ksi)	$\begin{array}{c} C_1 \\ C_2 \end{array}$	77.6 15.1	72.3 15.7	61.1 8.65	3.06 6.12	
	No. Specimens No. Batches Data Class	:	12 3 Screening		5 3 erim	
E_1^c	Mean Minimum Maximum C.V.(%)	8.92 6.56 11.1 15.0	8.37 6.15 10.3 15.8	8.29 6.49 9.88 13.0	7.70 6.05 9.21 13.5	
(Msi)	No. Specimens No. Batches	:	12 3		5	
v ₁₂ ^c	Data Class Mean No. Specimens No. Batches	Scre	ening	Inte	rim	
	Data Class Mean Minimum Maximum C.V.(%)		8940 6670 14300 27.3		7840 5410 12300 26.4	
ϵ_1^{cu}	B-value Distribution		(2) Lognormal		(2) Weibull	
(με)	C ₁ C ₂		9.07 0.248		8630 4.10	
	No. Specimens No. Batches Data Class	:	2 3 ening	1 3 Inte	3	

Specimens conditioned at 140°F, 95-100% RH for 99 days.
 Basis values are presented only for A and B data classes.

MATERIA	AL: T300	3k/EA 9396 8-h	arness satin w	eave fabric			4.2.27(e)		
RESIN C FIBER VO PLY THIO	OLUME: 53.7-5	37.1 wt% COMP. DENSITY: 1.48 g/cm ³ 55.5 % VOID CONTENT: 2.8-4.8 % 7-0.0153 in. VOID CONTENT: 2.8-4.8 %				T300 3H Compres [(C/Ep 366-8HS T300 3k/EA 9396 Compression, 2-axis [0 _f] ₁₂ -65/A, 72/A, 200/A		
TEST ME	THOD:		MODULUS CALCULATION: Interim, Screening						
AST	M D 3410B		Chord	between 1000 a	and 3000με				
NORMAL	IZED BY: Speci		C C	nt to 57% (0.014	2 in. CPT)				
	ture (°F) Content (%) m at T, RH		2 pient	6- Amb			00 pient		
Source C		3	51	3	1	3	1		
		Normalized	Measured	Normalized	Measured	Normalized	Measured		
	Mean Minimum Maximum C.V.(%)	63.7 52.5 69.1 7.50	60.9 52.3 65.6 7.03	86.4 72.3 96.8 10.2	83.2 70.6 91.2 8.38	42.1 35.0 49.4 9.61	40.4 35.2 45.8 7.86		
F ₂ ^{cu}	B-value Distribution	(1) Weibull	(1) Weibull	(1) Weibull	(1) Weibull	(1) ANOVA	(1) ANOVA		
(ksi)	C ₁ C ₂	65.7 18.7	62.7 19.1	90.2 12.7	86.1 15.8	4.48 5.05	5.27 3.56		
	No. Specimens No. Batches Data Class	14 3 Screening		1: 3 Inte	5		5 3 arim		
E ₂ ^c	Mean Minimum Maximum C.V.(%)	8.21 6.41 9.48 9.69	7.86 5.94 9.21 10.6	8.79 7.77 12.0 12.5	8.46 7.38 11.2 11.6	8.26 6.75 9.93 11.1	7.95 6.46 9.56 11.0		
(Msi)	No. Specimens No. Batches Data Class	:	14 3 Screening		3 Sening	15 3 Interim			
v_{21}^c	Mean No. Specimens No. Batches								
	Data Class Mean Minimum Maximum C.V.(%)		8260 5580 13900 26.1		11700 8230 14000 17.1		5360 3590 7610 21.4		
ϵ_2^{cu}	B-value Distribution		(1) Normal		(1) Weibull		(1) ANOVA		
(με)	C ₁ C ₂		8260 2150		12400 8.15		3.97 1210		
	No. Specimens No. Batches	:	4	1:	5	:	5		
	Data Class	Scre	ening	Scree	ening	Inte	erim		

MATERIA	AL: T300) 3k/EA 9396 8-h	arness satin w		s g/cm ³	C/Ep 3	4.2.27(f) 366-8HS		
RESIN CO FIBER VO PLY THIO	OLUME: 53.7-	-37.1 wt% -55.5 % 47-0.0152 in.	COMP. DE VOID CON	T300 3k/EA 9396 Compression, 2-axis [0 _f] ₁₂					
				-65/W, 72/W, 200/W					
TEST ME			MODULUS CALCULATION: Interim, Screening						
AST	M D 3410B		Chord	between 1000	and 3000µE				
NORMAL	IZED BY: Spec	cimen thickness	and areal weigh	nt to 57% (0.014	2 in. CPT)				
Temperat			72	-6			00		
	Content (%)		-2.30	1.91-			-2.30		
Source C	m at T, RH ode		1) 31	(1		(* 3			
	oue	Normalized	Measured	Normalized	Measured	Normalized	Measured		
	Mean	52.8	50.7	79.5	76.4	29.3	28.0		
	Minimum	45.8	44.4	69.0	67.6	20.6	19.8		
	Maximum	65.3	59.9	92.8	86.0	39.3	37.1		
	C.V.(%)	9.49	8.02	8.94	7.54	17.8	17.4		
CII	B-value Distribution	(2) Weibull	(2) Weibull	(2) Weibull	(2) Weibull	(2) Weibull	(2) Weibull		
F_2^{cu}									
(ksi)	C ₁	55.1	52.6	82.7	79.1	31.4	30.0		
	C ₂	10.2	12.7	12.2	14.7	6.42	6.58		
	No. Specimens		15	1	5	1	3		
	No. Batches		3		3		3		
	Data Class	Inte	erim	Inte		Scre			
	Mean	8.57	8.24	9.14	8.80	9.12	8.73		
	Minimum	6.91	6.56	8.48	8.19	7.51	7.36		
	Maximum	9.60	9.34	10.5	10.2	11.2	10.7		
E_2^c	C.V.(%)	10.1	10.3	6.29	6.01	11.9	11.5		
(Msi)	No. Specimens	1	15	1	5	1	3		
	No. Batches		3	3		3			
	Data Class	Inte	erim	Inte	rim	Scre	ening		
v_{21}^c	Mean No. Specimens No. Batches								
21	Data Class								
	Mean		6490		9850		3440		
	Minimum		3690		7460		1930		
	Maximum		12900		14100		5130		
	C.V.(%)		32.6		19.6		28.9		
	B-value		(2)		(2)		(2)		
ϵ_2^{cu}	Distribution		Lognormal		Weibull		Weibull		
(με)	C ₁		8.74		10600		38000		
SI /	C ₂		0.283		5.42		4.07		
	No. Specimens		15	4	5	1	3		
			15	1			3		
	No. Batches		3	3	3		3		

Specimens conditioned at 140°F, 95-100% RH for 62-99 days.
 Basis values are presented only for A and B data classes.

RESIN CONTENT: 31.9-35.4 wt% FIBER VOLUME: 53.9-57.0 % VOID CONTENT: 1.49 g/cm ³ COMP. DENSITY: 1.49 g/cm ³ Tato 3XREA 3396 SUPPORT OF TABLE AND ADDED TO THE AGE ADDED TO THE ADDED TO THE AGE ADDED TO TH	MATERIA	AL: T300	T300 3k/EA 9396 8-harness satin weave fabric Table 4.2.27(g) C/Ep 366-8HS							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	FIBER VOLUME: 53.9-57		57.0 %				T300 34 Shear, [+/ 72/A, -65	t/EA 9396 12-plane -45 _f] ₈ 5/A, 200/A,		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				MODULU	S CALCULATIO					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	AST	M D 3518								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	NORMAL	IZED BY: Not r	ormalized							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			72	-65	200					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Ambient	Ambient	Ambient					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			04	04	04					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Source C					-	-			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	E ^{su}									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		C ₁	12.8	19.2	8 16	10.5	17 7	4 49		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	()									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		No. Specimens	15	15	15	15	15	15		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			-	°	-	-	-	-		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccc} G_{12} & & & G_{2} & & \\ \hline (Msi) & No. Specimens & 15 & 15 & 15 & 15 & 13 & 14 \\ \hline No. Batches & 3 & 3 & 3 & 3 & 3 \\ \hline Data Class & Interim & Interim & Interim & Interim & Screening \\ \hline Mean & No. Specimens & No. Specimens & No. Batches & & & & & & & & \\ \hline \gamma_{12}^{s} & No. Batches & & & & & & & & & & & & & & & \\ \hline \end{array} $	C ^S									
No. Batches Data Class333333InterimInterimInterimInterimInterimScreeningMean No. Specimens γ_{12}^{s} No. BatchesInterimInterimInterim	G ₁₂	0. v.(70)	10.0	3.07	10.0	17.5	10.0	02.0		
No. Batches Data Class333333InterimInterimInterimInterimInterimScreeningMean No. Specimens γ_{12}^{s} No. BatchesInterimInterimInterim	(Msi)	No. Specimens	15	15	15	15	13	14		
$\begin{array}{c c} & \text{Mean} & & & \\ & \text{No. Specimens} \\ \gamma_{12}^{s} & \text{No. Batches} \end{array}$	No. Batches		-	-	-	3	•	-		
No. Specimens γ_{12}^{s} No. Batches			Interim	Interim	Interim	Interim	Screening	Screening		
	V ^S	No. Specimens								
	/ 12	Data Class								

Specimens conditioned at 140°F, 95-100% RH for 91 days.
 Basis values are presented only for A and B data classes.

4.2.28 AS4 12k/997 unidirectional tape

Material Description:

Material: AS4 /997

Form: Unidirectional tape, filament count of 12,000 filaments per tow, fiber areal weight of 145 g/m², typical cured resin content of 35%, typical cured ply thickness of 0.0056 inches.

Processing: Autoclave cure; 350° F, 85 psi for two hours.

General Supplier Information:

Fiber: AS4 fibers are continuous carbon filaments made from PAN precursor, surface treated to improve handling characteristics and structural properties. Filament count is 12,000 filaments per tow. Typical tensile modulus is 34 x 10⁶ psi. Typical tensile strength is 550,000 psi.

Matrix: 997 is a 350°F curing epoxy resin.

Maximum Short Term Service Temperature: 350°F (dry), 250°F (wet)

Typical applications: Primary and secondary aircraft structure. Elevated temperature service.

4.2.28 AS4 12k/997 unidirectional tape

MATERIAL:	AS4 12k/997 unidirectional tape			C/Ep 145-UT AS4/997 Summary			
FORM:	Fiberite HyE 997/AS4 Unsized 12	Fiberite HyE 997/AS4 Unsized 12k prepreg					
FIBER:	Hexcel AS4 12k, no twist	MATRIX:	Fiberite 997				
T _g (dry):	410°F T _g (wet): 320°F	T _g METHOD:	DMA E'				
PROCESSING:	Autoclave: 2 hours, 350°F, 85 psi						

Date of fiber manufacture	7/96-3/97	Date of testing	5/97-10/97
Date of resin manufacture	4/97	Date of data submittal	7/97
Date of prepreg manufacture	4/97	Date of analysis	2/99
Date of composite manufacture	4/97		

	73°F/A	-65°F/A	180°F/W		
Tension, 1-axis	BM-B	BM-B	BM-B		
Tension, 2-axis	BM-B	BM-B	BM-B		
Tension, 3-axis					
Compression, 1-axis	BM-B	BM-B	BM-B		
Compression, 2-axis	BM-B	BM-B	BM-B		
Compression, 3-axis					
Shear, 12-plane					
Shear, 23-plane					
Shear, 13-plane					
SBS, 31-plane	S	S	S		

LAMINA PROPERTY SUMMARY

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.79	1.77-1.80	SACMA SRM-15
Resin Density	(g/cm ³)	1.30		ASTM D 792
Composite Density (g/cn		1.60 1.58-1.60		
Fiber Areal Weight (g/		145		ASTM 3529-90, modified
Fiber Volume	(%)	57	54.4-62.6	
Ply Thickness	(in)	0.0056	0.0053-0.0059	

LAMINATE PROPERTY SUMMARY

	73/A	-65/A	180/W	
[0, <u>+</u> 45, 90] _{3s} Family				
Bearing	SS	SS	SS	
OHT	S	S	S	
ОНС	S	S	S	

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

MATERIA	AL: AS4	12k/997 unidire	ectional tape				I.2.28(a) 145-UT		
FIBER VO PLY THIO	OLUME: 55.5 CKNESS: 0.00	-31.1 wt% -64.8 % 55-0.0058 in.	COMP. DE VOID CON	ENSITY: 1.58-1.59 g/cm ³ AS4 12k/997 JTENT: 0-0.32 % Tension, 1-axis [0] ₈ 73/A, -65/A, 180/N			2k/997 n, 1-axis 0]₃ /A, 180/W		
TEST ME				S CALCULATIO		B30, Mean			
AST	M D 3039-76		Chord	modulus in line	ar range				
NORMAL	IZED BY: Spee	cimen thickness	and fiber area	l weight to 60%	fiber volume (0.0056 in. CPT)			
	ture (°F) Content (%) m at T, RH	7 amb		-6 amb		1.1	180 1.10 (1)		
Source C		8	5	85 85					
		Normalized	Measured	Normalized	Measured	Normalized	Measured		
	Mean Minimum Maximum	327 285 359	325 271 362	306 178 344	303 172 334	327 301 351	322 298 344		
	C.V.(%)	4.52	5.93	9.59	9.80	3.79	3.98		
F ₁ ^{tu}	B-value Distribution	292 Weibull	291 Normal	263 Weibull	262 Weibull	298 Weibull	298 Nonpara.		
(ksi)	C ₁ C ₂	334 24.1	325 19.3	317 17.0	313 17.6	332 29.4			
No. Specimens No. Batches		3 5 B3	5	30 5 B3	i i i i i i i i i i i i i i i i i i i	30 5 B3	5		
	Data Class Mean Minimum	19.9 18.4	19.8 19.0	20.0 19.3	19.8 18.6	20.1 18.4	19.8 18.7		
E_1^t	Maximum C.V.(%)	21.1 3.30	20.5 2.19	20.8 2.23	20.8 2.44	21.8 3.78	22.2 3.55		
(Msi)	No. Specimens No. Batches	3) 5	5	30 5		30 5			
v_{12}^{t}	Data Class Mean No. Specimens No. Batches	Me	an	Me	an	Me	an		
• 12	Data Class		45000		4.4000		45000		
	Mean Minimum Maximum C.V.(%)		15300 13500 16500 4.23		14300 8330 15500 9.09		15000 13700 16100 3.78		
$arepsilon_1^{ ext{tu}}$	B-value Distribution		13700 ANOVA		12600 Weibull		13800 Weibull		
(με)	C ₁ C ₂		666 2.45		14700 20.5		15290 29.9		
	No. Specimens No. Batches	3		30		31			
	Data Class	Ba		B3		Ba			

MATERIA	AL: AS	64 12k/997 unidirec	tional tape		Table 4.2.28(b) C/Ep 145-UT
FIBER V	OLUME: 55	9.4-32.7 wt% 9.5-64.8 % 9056-0.0059 in.	COMP. DENSITY: VOID CONTENT:	AS4 12k/997 Tension, 2-axis [90] ₂₄ 73/A, -65/A, 180/W	
TEST ME	THOD:		MODULUS CALCU	LATION:	B30, Mean
AST	M D 3039-76		Chord modulus	in linear range	
NORMAL	IZED BY: No	ot normalized.			
Tempera		73		-65	180
	Content (%)	ambie	nt	ambient	1.10
Equilibriu Source C	m at T, RH	85		85	(1) 85
Source C	Mean	11.3		12.7	5.64
	Minimum	9.70		11.2	4.30
	Maximum	13.3		14.4	6.60
	C.V.(%)	6.06		6.58	8.64
	B-value	10.1		10.8	4.15
F_2^{tu}	Distribution	Norm		Weibull	ANOVA
(ksi)	C ₁	11.3		13.1	0.515
(10)	C ₂	0.683		16.3	2.90
	No. Specimens	30		30	30
	No. Batches	5		5	5
	Data Class	B30		B30	B30
	Mean	1.36		1.53	1.21
	Minimum Maximum	1.27		1.43 1.61	1.16 1.32
E_2^t	C.V.(%)	3.19		2.63	3.38
(Msi)	No. Specimens			30	30
	No. Batches Data Class	5 Meai		5 Mean	5 Mean
	Mean		1	Iviean	Iviean
v_{21}^{t}	No. Specimens No. Batches	5			
	Data Class				
	Mean	8820		8700	4940
	Minimum Maximum	7390 1120		7470 10100	3710 5980
	C.V.(%)	8.07		7.25	9.17
$\varepsilon_2^{ m tu}$	B-value Distribution	7640 Lognori		7390 ANOVA	3650 ANOVA
-		9.08		637	472
(με)	C ₁ C ₂	0.079		2.06	2.72
	No. Specimens	30		30	30
	No. Batches	5		5	5
	Data Class	B30		B30	B30

MATERIA	AL: AS4	12k/997 unidire	ectional tape				Table 4.2.28(c) C/Ep 145-UT		
FIBER V	OLUME: 54.4	-32.5 wt% -62.6 % 55-0.0057 in.	COMP. DE VOID CON	NSITY: 1.58-1.59 g/cm ³ AS4 12k/997			2k/997 sion, 1-axis)] ₁₉ /A, 180/W		
TEST ME AST	ETHOD: M D 3410A-94		MODULUS	S CALCULATIO					
NORMAL	IZED BY: Spe	cimen thickness	and batch fibe	er areal weight to	o 60% fiber vol	ume (0.0056 in	CPT)		
	Content (%) m at T, RH	7: amb	ient	-65 ambient 85		180 1.10 (1) 85			
	loue	Normalized	Measured	Normalized	Measured	Normalized	Measured		
	Mean Minimum Maximum C.V.(%)	229 169 263 7.88	221 174 251 7.14	233 182 273 8.76	227 182 261 8.89	159 132 179 6.43	152 130 178 6.71		
F ₁ ^{cu}	B-value Distribution	195 Weibull	186 ANOVA	191 Weibull	186 Weibull	135 ANOVA	125 ANOVA		
(ksi)	C ₁ C ₂	236 16.5	16.0 2.19	242 13.3	236 13.2	10.4 2.29	10.6 2.58		
	No. Specimens No. Batches Data Class	30 5 B3	5	30 5 B3		3) 5 B3	5		
E_1^c	Mean Minimum Maximum C.V.(%)	17.8 16.6 18.7 2.86	17.2 16.5 18.0 1.96	18.1 17.1 20.1 4.11	17.6 16.8 19.5 3.26	18.6 17.2 20.5 4.23	17.8 17.1 19.2 2.50		
(Msi)	No. Specimens No. Batches Data Class	30 5 Me	5	5	30 30 5 5 Mean Mea				
v_{12}^{c}	Mean No. Specimens No. Batches								
	Data Class Mean Minimum Maximum C.V.(%)		15400 10700 17900 9.82		15600 11300 19200 12.9		9550 7830 11500 10.1		
$\varepsilon_1^{ m cu}$	B-value Distribution		9.82 11900 ANOVA		11500 Weibull		6900 ANOVA		
(με)	C ₁ C ₂		1544 2.26		16500 8.72		998 2.66		
	No. Specimens No. Batches Data Class	30 5 B3	5	30 5 B3		3) 5 B3	5		

MATERI	AL: AS4	12k/997 unidired	tional tape		Table 4.2.28(d)
FIBER VOLUME:54.4PLY THICKNESS:0.00		-32.7 wt% -62.6 % 56-0.0059 in.	COMP. DENSITY: VOID CONTENT:	1.58-1.59 g/cm ³ 0 -1.24 %	C/Ep 145-UT AS4 12k/997 Compression, 2-axis [90] ₂₄ 73/A, -65/A, 180/W
TEST ME	ETHOD:		MODULUS CALCU	LATION:	B30, Mean
	/I 1-94 _IZED BY: Not	normalized.	Chord modulus	between 1000 and 30	000 με
Equilibriu	Content (%) Im at T, RH	73 ambie	ent	-65 ambient	180 1.10 (1)
Source C	Mean	85 37.0		<u>85</u> 39.0	85 25.4
	Minimum Maximum C.V.(%)	29.8 40.8 8.43	5 3	20.7 53.9 24.3	24.0 27.9 3.26
F ₂ ^{cu}	B-value Distribution	28.9 ANO	VA	6.79 ANOVA	23.4 ANOVA
(ksi)	$\begin{array}{c} C_1 \\ C_2 \end{array}$	3.22		10.2 3.16	0.848 2.37
	No. Specimens No. Batches Data Class	30 5 B30		30 5 B30	30 5 B30
	Mean	1.4		1.55	1.34
	Minimum	1.12		1.33	1.20
E_2^c	Maximum C.V.(%)	1.70 9.93		1.92 7.63	1.50 5.93
(Msi)	No. Specimens No. Batches Data Class	30 5 Mea		30 5 Mean	30 5 Mean
v_{21}^{c}	Mean No. Specimens No. Batches			mean	Moun
	Data Class			0.4700	0.4555
	Mean Minimum Maximum C.V.(%)	3060 2420 3790 11.9	00	24700 12200 41400 26.7	34800 28900 39500 6.97
$\varepsilon_2^{ m cu}$	B-value Distribution	2270 Weib		2670 ANOVA	29100 ANOVA
(με)	C ₁ C ₂	3220 9.05		7371 3.13	2473 2.30
	No. Specimens No. Batches	30 5		30 5	30 5
	Data Class	B30)	B30	B30

MATER	RIAL:	AS4	12k/997 unidirectio	onal tape			e 4.2.28(e) p 145-UT	
FIBER VOLUME: 54.4			-32 wt% -62.6 % 53-0.0058 in.	COMP. DENSITY VOID CONTENT:		AS4 12k/997 Shear, 12-plane [+45/-45] _{4s} 73/A, -65/A, 180/W		
	METHOD: STM D 3518-94			MODULUS CALC	ULATION:	73/A, •	65/A, 180/W B18	
NORM	ALIZED BY:	N/A						
Moistur	rature (°F) e Content (%) rium at T, RH Code		73 Ambient 85	-65 Ambient 85	180 Wet (1) 85			
200100	Mean Minimum Maximum C.V.(%)							
F ₁₂ (ksi)	B-value Distribution C ₁ C ₂		Table 4.2.2	28(e) will be added	when necessary doo	cumentation is	submitted	
	No. Specimer No. Batches Data Class	IS						
G ^s ₁₂	Mean Minimum Maximum C.V.(%)							
(Msi)	No. Specimer No. Batches Data Class	IS						
	Mean Minimum Maximum C.V.(%)							
γ_{12}^{su}	B-value Distribution C ₁							
(με)	C ₂							
	No. Specimer No. Batches Data Class	IS						

MATERIAL: AS4	12k/997 unidirection	onal tape		Table 4.2.28(f) C/Ep 145-UT		
FIBER VOLUME: 54.4	9-33.8 wt% I-62.6 % 953-0.0058 in.	COMP. DENSITY VOID CONTENT:	0	AS4 12k/997 SBS, 31-plane [0] ₁₆		
TEST METHOD: ASTM D 2344-84		MODULUS CALC	ULATION:	73/A, -65/A, 180/W Screening		
NORMALIZED BY: N/A						
Temperature (°F) Moisture Content (%) Equilibrium at T, RH	73 Ambient	-65 Ambient	180 1.10 (1)			
Source Code	85	85	85			
Mean Minimum Maximum C.V.(%)	18.3 17.6 19.6 2.35	23.1 21.1 25.3 4.91	11.4 9.33 12.0 7.44			
$\begin{array}{llllllllllllllllllllllllllllllllllll$	(2) ANOVA	(2) ANOVA	(2) ANOVA			
(ksi) C ₁ C ₂	0.438 2.25	1.18 2.62	0.914 3.37			
No. Specimens No. Batches Data Class	30 5 Screening	28 5 Screening	30 5 Screening			
	Coroning	Corconnig	Corconnig			

Conditioned at 160°F, 85% RH.
 Short beam strength test data are approved for Screening Data Class only.

MIL-HDBK-17-2F

Volume 2, Chapter 4 Carbon Fiber Composites

MATERIAL:	AS4 12k/997 uni	idirectional tape			e 4.2.28(g) p 145-UT		
RESIN CONTENT: FIBER VOLUME: PLY THICKNESS:	34.6 wt% 57.7 % 0.0058 in.	COMP. DE VOID CON	ENSITY: 1.57 g/cm ³ AS4 12k/997				
TEST METHOD:	ASTMI	D 953-93			creening		
TYPE OF BEARING	TEST: double	lap shear					
JOINT CONFIGURA Member 1 (t,w,d,e) Member 2 (t,w,d,e) FASTENER TYPE:	0.25 in.	, 0.92 in., 0.25 in., ardened steel	0.75 in. (e/d = 3.0) HOLE CLEARANCI	Ξ:	0.001 in.		
TORQUE: NORMALIZED BY:	Not app Not nor	blicable malized	COUNTER SINK AI	NGLE & DEPTH	& DEPTH Not applicable		
Temperature (°F) Moisture Content (% Equilibrium at T, RH Source Code		73 Ambient 85	-65 Ambient 85	180 1.10 (1) 85			
	Mean Minimum Maximum C.V. (%)	92.7 87.9 101 4.78	92.0 82.9 106 8.44	70.3 67.2 75.7 5.18			
F ^{bu} (ksi)	B-value Distribution C ₁ C ₂	(3) Normal 92.7 4.43	(3) Normal 92.0 7.77	(3) Normal 70.3 3.65			
	No. Specimens No. Batches Data Class	6 1 Screening	6 1 Screening	6 1 Screening			
	Mean Minimum Maximum C.V. (%)	34.4 23.0 39.2 17.9	34.1 29.7 39.4 11.2	31.0 28.7 33.7 7.20			
F ^{bry} (2)	B-value Distribution	(3) Normal	(3) Normal	(3) Normal			
(ksi)	C_1 C_2	34.4 6.17	34.1 3.81	31.0 2.23			
	No. Specimens No. Batches Data Class	6 1 Screening	6 1 Screening	6 1 Screening			

Conditioned at 160°F, 85% RH.
 Offset measured at 4% hole diameter.
 Basis values are presented only for A and B data classes.

MATERIAL: AS4 12k/997 unidirectional tape Table 4.2.28(h) RESIN CONTENT: 28.8-29.0 wt% COMP. DENSITY: 1.59-1.60 lb/in ³ AS4 12k/997 FIBER VOLUME: 56.6-59.5 % VOID CONTENT: 0.75-1.11 % OHT, x-axis PLY THICKNESS: 0.0057-0.0058 in. [0/±45/90] _{3s} 73/A, -65/A, 180/W									
TEST METH	OD:	SI	RM 5-94				Scree		
SPECIMEN GEOMETRY: FASTENER TYPE:t = 0.10 in., w = 1.50 in., d = 0.25 in. Not applicableHOLE CLEARANCE: COUNTER SINK ANGLE & DEPTH:NORMALIZED BY:Specimen thickness and FAW to 60% (0.0056 in. CPT)									
Temperature (°F)73-65180Moisture Content (%)AmbientAmbient1.10Equilibrium at T, RH (°F, %)(1)							10		
Source Code		,0)		35	8		8	5	
	Mean Minimum Maximum C.V. (%)	I	Normalized 54.1 51.3 58.4 4.76	Measured 51.4 48.9 55.1 4.48	Normalized 49.2 45.9 52.4 5.51	Measured 46.8 44.3 50.0 4.74	Normalized 54.9 53.5 56.0 1.67	Measured 52.6 51.5 54.1 1.77	
F_x^{oht}	B-value Distributio	on	(2) Normal	(2) Normal	(2) Normal	(2) Normal	(2) Normal	(2) Normal	
(ksi)	C ₁ C ₂		54.1 2.58	46.8 2.22	49.2 2.71	46.8 2.22	54.9 0.916	52.6 0.929	
	No. Speci No. Batch Data Clas	nes		6 1 ening	6 1 Scree	l	0.916 0.929 6 1 Screening		
Data Olass									

Conditioned at 160°F, 85% RH.
 Basis values are presented only for A and B data classes.

MATERIAL: AS4 12k/997 unidirectional tape Table 4.2.28(i) RESIN CONTENT: 28.8-29.0 wt% COMP. DENSITY: 1.59-1.60 lb/in ³ AS4 12k/997 FIBER VOLUME: 56.3-56.9 % VOID CONTENT: 0.75-1.11 % OHC, x-axis PLY THICKNESS: 0.0057-0.0058 in. [0,±45,90]3s 72(4-45,90]3s										
TEST METH	OD:	SRM 3-94			73/A, -65/ Scree					
FASTENER TORQUE:	SPECIMEN GEOMETRY:t = 0.10 in., w = 1.50 in., d = 0.25 in.FASTENER TYPE:Not applicableHOLE CLEARANCE:TORQUE:COUNTER SINK ANGLE & DEPTH:NORMALIZED BY:Specimen thickness and FAW to 60% (0.0056 in. CPT)									
Temperature (°F)73-65180Moisture Content (%)AmbientAmbient1.10										
Source Code	t T, RH (°F, %)		85	8	5		1) 5			
	Mean Minimum Maximum C.V. (%)	Normalized 53.0 52.3 54.2 1.33	Measured 50.5 50.0 51.5 1.15	Normalized 59.8 58.4 61.0 1.77	Measured 57.0 55.7 58.3 1.96	Normalized 45.3 43.2 46.5 2.76	Measured 42.9 41.0 44.1 2.60			
F_x^{ohc}	B-value Distribution	(2) Normal	(2) Normal	(2) Normal	(2) Normal	(2) Normal	(2) Normal			
(ksi)	C_1 C_2	53.0 0.704	50.5 0.582	59.8 1.06	57.0 1.12	45.4 1.25	42.9 1.12			
	No. Specimens No. Batches Data Class		6 1 eening	e 1 Scree	l	1.25 1.12 6 1 Screening				

Conditioned at 160°F, 85% RH.
 Basis values are presented only for A and B data classes.

4.2.29 T650-35 12k/976 unidirectional tape

Material Description:

Material: T650-35 12k/976

Form: Unidirectional tape prepreg, fiber areal weight of 145 g/m², typical cured resin content of 39-45%, typical cured ply thickness of 0.0049 - 0.0058 inches.

Processing: Autoclave cure, 350°F, 95 psi, 90 minutes

General Supplier Information:

- Fiber: T650-35 fibers are continuous, no twist carbon filaments made from PAN precursor, surface treated to improve handling characteristics and structural properties. Filament count is 12,000 filaments/tow. Typical tensile modulus is 35 x 10⁶ psi. Typical tensile strength is 650,000 psi.
- Matrix: 976 is a high flow, modified epoxy resin that meets the NASA outgassing requirements. 10 days out-time at 72°F.

Maximum Short Term Service Temperature: 350°F (dry), 250°F (wet)

Typical applications: General purpose commercial and military structural applications.

Data Analysis Summary:

- 1. Glass transition temperature results were high for an epoxy.
- 2. Low longitudinal tension strengths were not reported due to low data and unresolved issues about the testing.
- 3. A high end outlier for compression modulus at 72°F ambient was not discarded because no inconsistencies were found.
- 4. For transverse tension strength at -67°F ambient and 250°F wet, scatter is too high to report basis values.

4.2.29 T650-35 12k/976 unidirectional tape

MATERIAL:	T650-35 12k/976 unidi	T650-35 12k/976 unidirectional tape							
FORM:	ICI Fiberite T650-35 12	CI Fiberite T650-35 12k/976 unidirectional tape prepreg							
FIBER:	Amoco T650-35 12k, L no twist	IC 309 sizing,	MATRIX:	ICI Fiberite 976					
T _g (dry):	486°F T _g (wet):	410°F	T _g METHOD:	DMA E'					
PROCESSING:	Autoclave cure: 90 ±10) min., 350 <u>+</u> 10°	F, 95 ± 5 psi.						

3/93-1/94	Date of testing	7/93-1/96
7/93-10/94	Date of data submittal	12/97
8/93-11/94	Date of analysis	5/00
10/94-6/95		
	7/93-10/94 8/93-11/94	8/93-11/94 Date of analysis

LAMINA PROPERTY SUMMARY

	72°F/A	-67°F/A	250°F/W		
Tension, 1-axis	BM	BM	BM		
Tension, 2-axis	bS	IS	IS		
Tension, 3-axis					
Compression, 1-axis	IM	bM	bM		
Compression, 2-axis	bS	IS	bS		
Compression, 3-axis					
Shear, 12-plane	BM	BM	BM		
Shear, 23-plane					
Shear, 31-plane					

PHYSICAL PROPERTY SUMMARY

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.77	1.77-1.78	SRM 15
Resin Density	(g/cm ³)	1.28	1.28	ASTM D 792
Composite Density	(g/cm ³)		1.55-1.61	
Fiber Areal Weight	(g/m ²)	145	144-147	Solvent Extraction
Fiber Volume	(%)	61	55.3-65.3	
Ply Thickness	(in)	0.0052	0.0049-0.0058	

LAMINATE PROPERTY SUMMARY

	72°F/A	-67°F/A	250°F/W		
[90/0] Family					
Compression, x-axis	bM	bM	bM		

MATERIA	AL: T650)-35 12k/976 un	idirectional tap	e		Table 4	.4.29(a)		
FIBER V PLY THI	RESIN CONTENT:39-45 wt%COMP. DENSITY:1.57-1.61 g/cm³FIBER VOLUME:56.9-64.5 %VOID CONTENT:0-1.0 %PLY THICKNESS:0.0050-0.0057 in.MODULUS CALCULATION:						C/Ep 145-UT T650-35/976 Tension, 1-axis [0] ₉ 72/A, -67/A, 250/W		
				S CALCULATIO		B30,	Mean		
AST	M D 3039-89		Chord	, 1000 - 6000 με	2				
NORMAL	IZED BY: Spec					ume (0.0052 in.			
	Content (%) m at T, RH	72 amb 80	ient	-6 amb	ient	25 1.11- 160, 8(1.21 85		
		Normalized	Measured	Normalized	Measured	Normalized	Measured		
	Mean Minimum Maximum C.V.(%)	231 175 256 7.37	236 173 264 8.27	170 120 210 14.5	174 123 208 13.7	258 223 286 5.89	260 220 295 7.58		
F_1^{tu}	B-value Distribution	202 Weibull	200 Weibull	124 Weibull	132 Weibull	212 ANOVA	197 ANOVA		
(ksi)	C ₁ C ₂	238 19.1	244 15.8	180 8.55	184 9.56	16.0 2.87	21.0 3.01		
	No. Specimens No. Batches Data Class	32 5 B3	0	30 5 B3	0	5 B3	30 5 B30 20.9 21.0		
E_1^t	Mean Minimum Maximum C.V.(%)	22.0 20.9 23.5 3.00	22.5 20.2 24.8 4.64	20.7 19.4 22.4 2.89	21.2 19.9 22.4 3.60	20.9 19.6 22.2 2.72	21.0 19.3 22.5 3.66		
(Msi)	No. Specimens No. Batches Data Class	32 5 Mei		30 5 Me	i i	3 5 Mean			
v_{12}^{t}	Mean No. Specimens No. Batches								
	Data Class Mean Minimum Maximum C.V.(%)								
$\varepsilon_1^{ m tu}$	B-value Distribution								
(με)	C ₁ C ₂								
	No. Specimens No. Batches Data Class								

MATERIA	AL: T650	0-35 12k/976 unidire	ctional tape		Table 4.2.29(b)
FIBER VOLUME: 55.3-		5 wt% (-62.4 % \ 52-0.0058 in.	C/Ep 145-UT T650-35/976 Tension, 2-axis [90] ₂₄ 72/A, -67/A, 250/A		
TEST ME	THOD:	I	MODULUS CALCU	JLATION:	B18, Screening
AST	M D 3039-89		Chord, 1000 - 6	6000 με	
NORMAL	IZED BY: Not	normalized.			
Tempera		72		-67	250
	Content (%) m at T, RH	ambient		ambient	0.97-1.03 160, 85
Source C		80		80	80
	Mean	5.71		4.76	2.40
	Minimum	4.66		2.61	1.32
	Maximum	6.74		7.07	3.46
	C.V.(%)	9.23		22.6	26.7
	B-value	4.42		(1)	(1)
F_2^{tu}	Distribution	Weibull		ANOVA	ANOVA
(ksi)	C ₁	5.95		1.14	0.720
(-)	C ₂	12.0		3.57	4.80
	No. Specimens	18		18	18
	No. Batches	3		3	3
	Data Class	B18		B18	B18
	Mean	1.30		1.37	0.934
	Minimum Maximum	1.18 1.42		1.24 1.61	0.820 1.07
E_2^t	C.V.(%)	4.97		8.38	10.2
(Msi)	No. Specimens	9		9	9
	No. Batches	3		3	3
	Data Class	Screening		Screening	Screening
v_{21}^t	Mean No. Specimens No. Batches				
	Data Class				
	Mean				
	Minimum Maximum				
	C.V.(%)				
ϵ_2^{tu}	B-value Distribution				
_	C ₁				
(με)	C_1 C_2				
	No. Specimens No. Batches Data Class				

(1) B-basis values calculated from less than five batches of data using the ANOVA method are not presented.

MATERIA	AL: T65	0-35 12k/976 unidi	rectional tape		Table 4.2.29(c)
RESIN CONTENT: 39-4 FIBER VOLUME: 60.0		45 wt% COMP. DENSITY: 1.57-1.60 g/cm ³ 0-62.2 % VOID CONTENT: 0-1.0 % 050-0.0054 in. MODULUS CALCULATION:		0-1.0 %	C/Ep 145-UT T650-35/976 Compression, 2-axis [90] ₂₂ 72/A, -67/A, 250/W B18, Interim, Screening
	TM D 3410-87		Chord, 1000 - 3		
NORMAL	LIZED BY: Not	normalized.			
	Content (%) m at T, RH	72 ambier 80	nt	-67 ambient 80	250 (1) 160, 85 80
	Mean	33.6		39.5	18.6
	Minimum	30.7		33.9	15.3
	Maximum	37.4		44.6	20.0
	C.V.(%)	6.40		6.84	5.68
F ₂ ^{cu}	B-value Distribution	28.1 Weibu	П	(2) Weibull	16.4 Weibull
(ksi)	C ₁	34.6		40.7	19.0
	C ₂	17.1		16.4	24.6
	No. Specimens	18		17	18
	No. Batches	3		3	3
	Data Class	B18		Interim	B18
	Mean	1.38		1.55	1.08
	Minimum	1.23		1.45	0.940
E_2^c	Maximum C.V.(%)	1.44 5.48		1.66 4.11	1.21 8.38
(Msi)	No. Specimens No. Batches	9 3		8 3	10 3
	Data Class	Screeni	ng	Screening	Screening
v_{21}^c	Mean No. Specimens No. Batches				
	Data Class Mean				
	Minimum Maximum C.V.(%)				
ϵ_2^{cu}	B-value Distribution				
(με)	C ₁ C ₂				
	No. Specimens No. Batches Data Class				

(1) Unknown moisture content.

(2) Basis values are presented only for A and B data classes.

MATER	RIAL: T65	0-35 12k/976 unidi	rectional tape		Table 4.2.29(d)
FIBER	VOLUME: 58.0	45 wt% 6-62.2 % 152-0.0055 in.	COMP. DENSITY: VOID CONTENT:	1.58-1.59 g/cm ³ 0-1.0 %	C/Ep 145-UT T650-35/976 Shear, 12-plane [+45/-45] _{4s} 72(A_67/A_250/W
TEST	METHOD:		MODULUS CALCI	ULATION:	72/A, -67/A, 250/W B30, Mean
AS	STM D 3518-82		Chord, 1000 - 3	3000 με	
NORM	ALIZED BY: Not	normalized			
	rature (°F)	72	-67	250	
	e Content (%) rium at T, RH	ambient	ambient	1.16-1.22 160, 85	
Source		80	80	80	
	Mean	14.9	17.4	11.8	
	Minimum	13.1	16.1	10.9	
	Maximum	18.1	19.2	12.4	
	C.V.(%)	11.4	4.85	3.54	
	B-value	8.57	14.7	10.4	
F_{12}^{su}	Distribution	ANOVA	ANOVA	ANOVA	
(ksi)	C ₁	1.86	0.893	0.455	
()	C ₂	3.39	2.98	3.25	
	No. Specimens	30	30	30	
	No. Batches	5	5	5	
	Data Class	B30	B30	B30	
	Mean	0.745	0.919	0.542	
	Minimum	0.680	0.700	0.510	
~	Maximum C.V.(%)	0.830 4.82	1.05 10.4	0.580 3.91	
G_{12}^s	0.0.(/0)	1.02	10.1	0.01	
(Msi)	No. Specimens	30	30	30	
, ,	No. Batches	5	5	5	
	Data Class	Mean	Mean	Mean	
	Mean Minimum				
	Maximum				
	C.V.(%)				
, su	B-value Distribution				
γ_{12}^{su}					
(με)	C ₁				
	C ₂				
	No. Specimens				
	No. Batches				
	Data Class				

MATERI	AL: T65	0-35 12k/976 ur	nidirectional tap	De			4.2.29(e) 145-UT
FIBER V	OLUME: 57.3 CKNESS: 0.00	45 wt% COMP. DENSITY: 1.57-1.60 g/cm ³ 3-65.3 % VOID CONTENT: 0-1.0 % 049-0.0056 in. MODULUS CALCULATION:				T650 Compres [9 72/A, -6	-35/976 sion, x-axis 0/0] ₈ 7/A, 250/W , Mean
AS	TM D 3410-87		Chord	, 1000 - 3000 μ	.£		
NORMAL	LIZED BY: Spe	cimen thickness	s and batch fibe	er areal weight	to 60% fiber vol	ume (0.0052 ir	n. CPT)
	Content (%) um at T, RH	amt	2 bient 30	amt	67 pient 30	1.21 160	50 -1.33), 85 30
		Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean Minimum Maximum C.V.(%)	131 117 144 6.34	131 115 148 6.54	146 131 161 5.50	145 129 163 6.22	95.9 83.8 110 6.76	98.2 87.9 111 5.74
F _x ^{cu}	B-value Distribution	(1) ANOVA	(1) ANOVA	127 Weibull	(1) ANOVA	77.2 ANOVA	83.4 ANOVA
(ksi)	$\begin{array}{c} C_1 \\ C_2 \end{array}$	8.64 2.93	9.11 3.25	150 19.6	9.53 3.12	6.79 2.77	5.82 2.53
	No. Specimens No. Batches Data Class	23 4 B18			24 4 B18		29 5 18
E ^c _x	Mean Minimum Maximum C.V.(%)	9.72 8.65 10.8 4.41	9.76 8.86 10.8 4.58	10.2 9.48 11.0 3.99	10.1 9.37 10.7 4.28	10.0 9.57 10.9 3.71	10.3 9.15 11.2 5.08
(Msi)	No. Specimens No. Batches Data Class		3 4 ean	24 4 Mean		29 5 Mean	
v ^c _{xy}	Mean No. Specimens No. Batches						
	Data Class Mean Minimum Maximum C.V.(%)						
$\varepsilon_{\rm x}^{\rm cu}$	B-value Distribution						
(με)	C ₁ C ₂						
	No. Specimens No. Batches Data Class						

(1) B-basis values calculated from less than five batches of data using the ANOVA method are not presented.

4.2.30 IM7 12k/PR381 unidirectional tape

These data are presented in the MIL-HDBK-17-2F Annex A.

4.2.31 IM7 6k/PR500 4-harness satin weave fabric

These data are presented in the MIL-HDBK-17-2F Annex A.

4.2.32 T650-35 3k/976 8-harness satin weave fabric

Material Description:

Material: T650-35 3k/976

Form: Eight harness satin fabric prepreg, fiber areal weight of 374 g/m², typical cured resin content of 40%, typical cured ply thickness of 0.011 - 0.014 inches.

Processing: Autoclave cure, 350°F, 95 psi, 90 minutes

General Supplier Information:

- Fiber: T650-35 fibers are continuous, no-twist carbon filaments made from PAN precursor, surface treated to improve handling characteristics and structural properties. Filament count is 3000 filaments/tow. Typical tensile modulus is 35 x 10⁶ psi. Typical tensile strength is 650,000 psi.
- Matrix: 976 is a high flow, modified epoxy resin that meets the NASA outgassing requirements. 10 days out-time at 72°F.

Maximum Short Term Service Temperature: 350°F (dry), 250°F (wet)

Typical applications: General purpose commercial and military structural applications.

Data Analysis Summary:

- 1. For transverse tension, a bowtie specimen is not in concert with the test method used.
- 2. Two low end outliers for transverse compression modulus at -67°F ambient were not discarded because no inconsistencies were found.

4.2.32 T650-35 3k/976 8 harness satin weave fabric

MATERIAL:	T650-35 3	T650-35 3k/976 8-harness satin weave fabric				
FORM:	Cytec Fibe	erite 8-harnes	s satin weave f	abric prepreg	-	
FIBER:	Amoco T6	50-35 3k, UC	309, no twist	MATRIX:	Cytec Fiberite 976	
T _g (dry):	443°F	T _g (wet):	380°F	Tg METHOD:	DMA E'	
PROCESSING:	Autoclave	cure, 350°F,	90 min, 95 psi			

Date of fiber manufacture	9/90 — 9/95	Date of testing	6/93 – 1/96
Date of resin manufacture	6/92 - 6/94	Date of data submittal	12/97
Date of prepreg manufacture	6/92 - 10/94	Date of analysis	1/01
Date of composite manufacture	1/93 – 4/95		

LAMINA PROPERTY SUMMARY

	72°F/A	-67°F/A	250°F/W	
Tension, 1-axis	BM	BM	bSS-	
Tension, 2-axis	bS	BI	bSS-	
Tension, 3-axis				
Compression, 1-axis	bS	BM	bM	
Compression, 2-axis	bS	BM	bS	
Compression, 3-axis				
Shear, 12-plane	BM	bM	BM	
Shear, 23-plane				
Shear, 13-plane				

PHYSICAL PROPERTY SUMMARY

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.77	1.76 – 1.78	SRM 15
Resin Density	(g/cm ³)	1.28	-	ASTM D 792
Composite Density	(g/cm ³)	1.57	1.56-1.59	
Fiber Areal Weight	(g/m ²)	374	-	
Fiber Volume	(%)	59	58-61	
Ply Thickness	(in)	0.0130	0.0113 - 0.0146	

LAMINATE PROPERTY SUMMARY

MATERIA	AL: T650)-35 3k 976/8-ha	arness satin we	eave fabric		Table 4. C/Ep 37		
FIBER V	OLUME: 59 -	34 % wt 64 vol % 3-0.014 in.	COMP: DE VOID CON		1.59 g/cm ³	T650-3 Tension, [0]	5 976 , 1-axis] ₇	
TEST ME	тнор			S CALCULATIO	Nŀ	72/A, -67/A, 250/W B30, B18, Mean, Screening		
	tie Specimen- ASTI	M D 3039 76		, 1000 - 6000 με		200, 210, moa	n, corconing	
2011			Chora	, 1000 - 0000 με	5			
	in. CF	די <u>(</u> די		-		t to 57% fiber vo		
Tempera	ture (°F) Content (%)	72 amb		-6 amb		25 1.12-	50 -1 21	
	im at T, RH	and	ient	and			, 85	
Source C	Code	8	-	80		8		
		Normalized	Measured	Normalized	Measured	Normalized	Measured	
	Mean Minimum	99.2 79.2	107 85.4	82.0 68.4	86.8 70.8	104 90.2	115 99.3	
	Maximum	111	65.4 124	92.5	70.8 99.5	118	99.3 130	
	C.V.(%)	7.03	7.16	8.24	8.65	7.85	7.62	
t 1	B-value	82.5	89.2	64.9	67.5	88.8	95.2	
F_1^{tu}	Distribution	ANOVA	ANOVA	ANOVA	ANOVA	Weibull	Weibull	
(ksi)	C ₁ C ₂	7.91 2.33	7.91 2.29	6.98 2.44	7.78 2.48	108 16.0	119 16.2	
	No. Specimens No. Batches Data Class	30 6 B3	5	36 6 B3		18 3 B18		
\mathbf{E}_{1}^{t}	Mean Minimum Maximum C.V.(%)	10.3 9.23 10.8 3.62	11.1 10.4 11.5 2.81	10.3 10.1 10.7 2.28	11.4 10.6 13.0 4.71	11.0 10.3 11.9 5.38	12.1 11.4 13.1 5.45	
(Msi)	No. Specimens	2	7	18	3	ç	9	
	No. Batches Data Class	6 Me		6 Mea		Scree	0	
v_{12}^{t}	Mean No. Specimens No. Batches)33) 3	
• 12	Data Class					Scree	ening	
	Mean Minimum Maximum C.V.(%)							
$arepsilon_1^{ ext{tu}}$	B-value Distribution							
(με)	C ₁ C ₂							
	No. Specimens No. Batches Data Class							

(1) Basis values are presented only for A and B data classes.

MATERI	AL: T6	50-35 3k 976/8-ha	arness satin we	eave fabric			.2.32(b)	
FIBER V	OLUME: 59	– 34 % wt - 64 vol % 13-0.014 in.	Comp: De Void Con		6-1.59 g/cm ³	T650- Tensior [9	74-8HS 35 976 n, 2-axis 0 _f] ₇	
TEST M	ETHOD:		MODULUS	S CALCULATIO	N:	72/A, -67/A, 250/W B30, B18, Screening, Interim		
Bow	rtie Specimen- AS	TM D 3039 76 (2)	Chord	, 1000-6000 με				
NORMAI	LIZED BY: Spe	ecimen thickness	and batch fibe	er areal weight to	o 57% fiber vol	<u>ume (0.0146 in</u>	CPT)	
	Content (%) um at T, RH	72 amb	ient	-6 amb 80	ient	25 1.12- 160 8	1.21 , 85	
		Normalized	Measured	Normalized	Measured	Normalized	Measured	
	Mean Minimum Maximum C.V.(%)	106 95.2 115 4.62	116 105 126 4.59	82.2 61.7 97.4 10.6	89.2 63.8 108 11.4	111 93.3 125 6.15	122 103 137 6.22	
F ₂ ^{tu}	B-value Distribution	94.0 Weibull	102 Weibull	62.0 ANOVA	62.8 ANOVA	97.8 Normal	104 Weibull	
(ksi)	C ₁ C ₂	108 26.0	118 23.9	8.91 2.26	10.5 2.52	111 6.85	126 18.4	
	No. Specimens No. Batches Data Class	18 3 B18		30 5 B3	i	1/ 3 B1	3	
E ₂ ^t	Mean Minimum Maximum C.V.(%)	10.7 9.83 11.6 5.81	11.7 10.9 12.6 4.55	10.4 9.74 11.1 3.01	11.1 10.2 12.0 4.07	10.8 9.67 11.2 5.29	11.80 10.9 12.3 4.15	
(Msi)	No. Specimens No. Batches Data Class	g 3 Scree	6	15 5 Inte	i	s Scree	3	
v_{21}^{t}	Mean No. Specimens					0.0 3	30	
	No. Batches Data Class					1 Scree		
	Mean Minimum Maximum C.V.(%)							
$\varepsilon_2^{ m tu}$	B-value Distribution							
(με)	C ₁ C ₂							
	No. Specimens No. Batches Data Class							

Basis values are presented only for A and B data classes.
 Bowtie specimen is not the standard specimen geometry using this method.

MATERIAI	· T650 2	5 3k 976/8-harn		o fabric		Table	.2.32(c)	
RESIN CC FIBER VO PLY THICI	NTENT: 28 – 34 LUME: 59 - 64	% wt vol %	COMP: DEN VOID CONT	ISITY: 1.56-7	1.59 g/cm ³	C/Ep 3 T650- Compress	74-8HS 35 976 sion, 1-axis	
		.014 111.				72/A, -67	/Ā, 250/W	
TEST MET		_		CALCULATION	1:	B30, B18,	Screening	
ASTN	1 D 3410-87 Procedu	re B	Chord, 10	000-3000 με				
NORMALI		n thickness and						
Temperatu Moisture C	ure (°F) Content (%)		2 pient	-6 amb		25 1.00-	-	
Equilibrium	n at T, RH					160	85	
Source Co	de	8 Normalized	0 Measured	8 Normalized	0 Measured	8 Normalized) Measured	
	Mean	86.2	95.5	92.6	102	55.1	57.1	
	Minimum	62.9	71.6	72.9	78.7	42.4	46.0	
	Maximum	100	108	115	131	68.6	68.4	
	C.V.(%)	10.3	9.82	12.7	13.7	15.1	11.9	
	B-value	70.3	77.0	55.0	56.8	25.6	34.2	
F _l ^{cu}	Distribution	Weibull	Weibull	ANOVA	ANOVA	ANOVA	ANOVA	
(ksi)	C ₁	89.8	99.4	12.5	15.4	9.05	7.32	
	C ₂	13.2	14.0	3.00	3.12	3.25	3.12	
	No. Specimens	1	8	3	0	2	1	
	No. Batches	3		5		5		
	Data Class		B18		B30		8	
	Mean Minimum	8.81 8.45	9.81 9.26	9.38 8.82	10.0 9.51	9.35 8.53	9.76 9.28	
	Maximum	9.12	10.3	9.99	10.4	9.98	10.4	
E_1^c	C.V.(%)	2.19	4.03	4.21	2.40	5.22	4.03	
(Msi)	No. Specimens	(à	2	n		1	
(10151)	No. Batches		3	5		21 5		
	Data Class	Scre	ening	B1	8	B1	8	
	Mean No. Specimens							
v_{12}^{t}	No. Batches							
12	Data Class							
	Mean Minimum							
	Minimum Maximum							
	C.V.(%)							
	B-value							
ε_2^{cu}	Distribution							
(με)	C ₁							
	C ₂							
	No. Specimens							
	No. Batches							
L	Data Class							

MATERIA	L: T650)-35 3k 976/8-harn	ess satin wea	ve fabric		Table 4 C/Ep 37		
RESIN CO FIBER VO PLY THIC	DLUME: 59 -	34 % wt 64 vol % 3-0.014 in.	COMP: DEN VOID CONT		I.59 g/cm ³	T650-35 976 Compression, 2-axis [90 _f] ₇ 72/A, -67/A, 250/W		
TEST ME	THOD:		MODULUS	CALCULATION	l:	B30, B18, Mean,		
	/ D 3410-87 Proce	dure B		000-3000 με		Screening		
NORMAL	in. C	nalized by specime	en thickness a		5	o 57% fiber vol	ume (0.0146	
Temperat		-	2	-6		25	-	
	Content (%)	ami	pient	amb	lient	1.00-		
Equilibriur Source Co	n at T, RH	9	80	8	0	160		
	Jue	Normalized	Measured	Normalized	Measured	Normalized	Measured	
	Mean	90.1	97.5	97.4	106	54.7	59.9	
	Minimum	82.1	97.5 88.5	74.5	81	50.3	53.6	
	Maximum	99.6	00.5 112	113	127	63.0	70.9	
	C.V.(%)	6.75	6.62	9.90	9.95	6.74	8.21	
	B-value	(1)	(1)	72.3	71.5	47.4	(1)	
			(1)	_	-		(1)	
F_2^{cu}	Distribution	ANOVA	ANOVA	ANOVA	ANOVA	Normal	ANOVA	
(ksi)	C ₁	6.41	6.70	10.1	11.2	54.7	5.22	
()	C ₂	3.54	3.20	2.49	3.05	3.69	3.72	
							-	
	No. Specimens		8	3		18		
	No. Batches		3	6		3		
	Data Class		18	B3		B1	-	
	Mean	8.98	9.73	9.21	9.82	9.43	10.3	
	Minimum	8.04	8.58	8.20	9.03	8.98	9.99	
	Maximum	9.51	10.6	10.0	10.7	9.75	10.6	
E_2^c	C.V.(%)	6.01	6.54	4.05	4.22	3.32	2.46	
(Msi)	No. Specimens		9	2	6	g)	
(No. Batches		3	6		3	3	
	Data Class	Scre	ening	Me	an	Scree	ening	
v_{21}^{t}	Mean No. Specimens							
	No. Batches Data Class							
	Mean							
	Minimum							
	Maximum							
	C.V.(%)							
CU	B-value Distribution							
$\varepsilon_2^{\mathrm{cu}}$								
(με)	C ₁							
., /	C ₂							
	No. Specimens No. Batches							
	Data Class							

(1) B-basis values calculated from less than five batches of data using the ANOVA method are not presented.

MATER		0-35 3k 976/8-harness sa	atin weave fabric	Table 4.2.32(e)
RESIN FIBER PLY TH	CONTENT: 28 - VOLUME: 59 -	- 34 % wt COI 64 vol % VOI 13-0.014 in.	MP. DENSITY: 1.56-1.59 g/cm ³ D CONTENT: 0 DULUS CALCULATION:	C/Ep 374-8HS T650-35 976 Shear, 12-plane [+45 _f /-45 _f] _s 72/A, -67/A, 250/W B30, B18, Mean
		-		B30 , B10 , Weall
AS	STM D 3518-82 (1)	(Chord, 0 - 3000 με	
		normalized		
Moistur	rature (°F) re Content (%) rium at T, RH Code	72 Ambient 80	-67 Ambient 80	250 1.22 160,85 80
Obdice	Mean Minimum Maximum	12.8 12.0 13.9	14.5 13.6 15.2	8.99 8.41 10.4
F ₁₂ ^{su}	C.V.(%) B-value Distribution	3.81 11.0 ANOVA	2.58 13.3 ANOVA	5.60 8.41 Nonpara.
(ksi)	C ₁ C ₂	0.53 3.49	0.39 2.57	1.00 1.22
	No. Specimens No. Batches Data Class	30 5 B30	29 5 B18	30 5 B30
G_{12}^{s}	Mean Minimum Maximum C.V.(%)	0.85 0.73 0.98 7.10	1.05 0.93 1.13 5.07	.47 .37 .52 9.63
(Msi)	No. Specimens No. Batches Data Class	26 5 Mean	30 5 Mean	21 5 Mean
	Mean Minimum Maximum C.V.(%) B-value			
γ ^{su} (με)	Distribution C_1 C_2			
	No. Specimens No. Batches Data Class			

(1) Test method used ultimate strength to failure.

4.2.33 T700S 12k/3900-2 plain weave fabric

Material Description:

Material: T700S 12k/3900-2

Form: Plain weave fabric prepreg, 3 tows per inch, fiber areal weight of 193 g/m², typical cured resin content of 35%-36%, typical cured ply thickness of 0.0073-0.0079 inches.

Processing: Autoclave cure, 350°F, 85 psi, 3°F/minute ramp rate, 2 hours

General Supplier Information:

Fiber: T700 fibers are continuous, standard modulus, no twist carbon filaments made from a PAN precursor, surface treated to improve handling characteristics and structural properties. Filament count is 12,000 filaments/tow. Typical tensile modulus is 34 x 10⁶ psi. Typical tensile strength is 700,000 psi.

Matrix: 3900-2 is an toughened epoxy resin.

Maximum Short Term Service Temperature: 300°F (dry), 180°F (wet)

Typical applications: General purpose commercial and military aerospace structural applications.

Data Analysis Summary: None

4.2.33 T700S 12k/3900-2 plain weave fabric

MATERIAL:	T700S 12	k/3900-2 plair		C/Ep T700S/3900-2 Summary					
FORM:	Toray F62	273C-30H plai	n weave fa	bric	prepreg				
FIBER:	Toray tows/inch,	T700SC-120 UD309 Sizin	,	3	MATRIX:	Toray 3900-2	2		
T _g (dry):	330°F	T _g (wet):	230°F		T _g METHOD:	ASTM E 154	5 (TMA)		
PROCESSING:	Autoclave	Autoclave Cure: 350°F, 85 psi, 3°F/minute ramp rate, 2 hours							

Date of fiber manufacture	1/98	Date of testing	1/99-3/99
Date of resin manufacture	1/98	Date of data submittal	12/99
Date of prepreg manufacture	1/98	Date of analysis	1/00
Date of composite manufacture	3/99		

LAMINA PROPERTY SUMMARY

	75/A	-67/A	180/W		
Tension, 1-axis					
Tension, 2-axis					
Tension, 3-axis					
Compression, 1-axis					
Compression, 2-axis					
Compression, 3-axis					
Shear, 12-plane					
Shear, 23-plane	SS	SS	SS		
Shear, 31-plane	SS	SS	SS		
SB Strength, 31-plane	S	S	S		

PHYSICAL PROPERTY SUMMARY

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.80	1.80	ASTM D 3800
Resin Density	(g/cm ³)	1.22		ASTM D 791
Composite Density	(g/cm ³)	1.53	1.54	
Fiber Areal Weight	(g/m ²)	193	192.1	ASTM D 5300
Fiber Volume	(%)	54	54.6-55.4	ASTM D 3171
Ply Thickness	(in)	0.0079	0.0078-0.0079	

LAMINATE PROPERTY SUMMARY

MATERIAL:	T700)S 12k/3900-2 j	olain weave fab	ric			.2.33(a) 193-PW	
RESIN CONT FIBER VOLUI PLY THICKNE	ME: 55 %	wt.% % 73-0.0074 in.	COMP. D VOID CO		i4 g/cm ³ %	T700S/3900-2 SBS, 31-plane [0 _f] ₃₄ 75/A, -67/A, 180/W		
TEST METHO				S CALCULATI	ON:	Screening		
ASTM D	2344-84		N/A					
NORMALIZED	DBY: Not	normalized						
Temperature (Moisture Cont Equilibrium at	ent (%)	75 Ambient	-67 Ambient	180 1.0 (1)				
Source Code		90	90	90				
	num mum	10.3 10.2 10.7	12.4 11.7 12.9	7.67 7.45 7.91				
C.V. B-va		1.94 (2)	4.41 (2)	2.13 (2)				
F ₃₁ ^{sbs} Distr	ibution	Nonpara.	Normal	Normal				
(ksi) C ₁ C ₂			12.4 0.546	7.67 0.164				
No. E	Specimens Batches Class	6 1 Screening	6 1 Screening	6 1 Screening				
Dala		Screening	Ocreening	Ocreening				

Conditioned at 160°F and 95 ± 2% RH until 1.0% moisture content attained.
 Short beam strength test data are approved for Screening Data Class only.

MATER	RIAL: T70	00S 12k/3900-2	plain weave fab	ric		Table 4.2.33(b) C/Ep 193-PW
FIBER	VOLUME: 54.	1 wt.% 6 % 078-0.0079 in.	COMP. D VOID COI		4 g/cm ³ 6	T700S/3900-2 Shear, 13-plane [0 _f] ₉₅ 75/A, -67/A, 180/W
TEST	IETHOD:		MODULU	S CALCULATIO	ON:	Screening
AS	STM D 5379-93		Chord	1000 - 3000 μ	ε	
NORM	ALIZED BY: Not	normalized				
	rature (°F)	75	-67	180		
	e Content (%) ium at T, RH	Ambient	Ambient	1.0 (1)		
Source		90	90	90		
	Mean	10.4	13.3	6.97		
	Minimum	10.2	12.6	6.80		
	Maximum C.V.(%)	10.6 1.28	13.6 3.08	7.10 1.48		
	0. v.(70)	1.20	5.00	1.40		
	B-value	(2)	(2)	(2)		
F_{13}^{su}	Distribution	Normal	Normal	Normal		
(ksi)	C ₁	10.4	13.3	6.97		
()	C_2	0.133	0.410	0.103		
	No. Specimens	6	6	6		
	No. Batches	1 Caraanin r	1	1		
	Data Class Mean	Screening 0.418	Screening 0.498	Screening 0.374		
	Minimum	0.394	0.490	0.366		
	Maximum	0.436	0.520	0.381		
G ^s ₁₃	C.V.(%)	3.58	3.72	1.58		
(Msi)						
(10131)	No. Specimens	6	6	6		
	No. Batches	1	1	1		
	Data Class	Screening	Screening	Screening		
	Mean					
	Minimum Maximum					
	C.V.(%)					
	B-value					
$\gamma_{13}^{\rm su}$	Distribution					
(με)	C ₁					
(pe)	C ₂					
	No. Specimens					
	No. Batches					
	Data Class					

Conditioned at 160°F and 95 <u>+</u> 2% RH until 1.0% moisture content attained.
 Basis values are presented only for A and B data classes.

RESIN CONTENT: 36.1 wt.% COMP. DENSITY: 1.54 g/cm ³ T700S/32 FIBER VOLUME: 54.6 % VOID CONTENT: 0 % Shear, 23 PLY THICKNESS: 0.0078-0.0079 in. MODULUS CALCULATION: Chord, 1000 - 3000 µc Shear, 23 NORMALIZED BY: Not normalized Chord, 1000 - 3000 µc Stear, 23 NORMALIZED BY: Not normalized (1) Screen Temperature (°F) 75 -67 180 (1) Source Code 90 90 90 90 Mean 10.3 13.2 7.08 (1) Minimum 10.0 127 6.99 (2) (2) Fig3 Distribution Normal Normal Normal Maximum 10.3 13.2 7.08 (2) (2) Fig3 Distribution Normal Normal Normal (4) (4) Maximum 0.375 0.478 0.333 (6) (2) (2) (2) (2) (2) (2) (2) (4) (4) (4) (4) (4)	.33(c) 3-PW		
TEST METHOD: ASTM D 5379-93 MODULUS CALCULATION: Chord, 1000 - 3000 με Screen NORMALIZED BY: Not normalized -67 180 - Temperature (°F) Moisture Content (%) Equilibrium at T, RH 75 -67 180 - Source Code 90 90 90 - - - Mainimum 10.3 13.2 7.08 - - - Maximum 10.9 13.7 7.14 - - - - C.V.(%) 3.29 2.56 0.870 -	C/Ep 193-PW T700S/3900-2 Shear, 23-plane [0₁]95 75/A, -67/A, 180/W		
NORMALIZED BY: Not normalized Temperature (°F) Moisture Content (%) Equilibrium at 7, RH Source Code 75 Ambient -67 Ambient 180 1.0 Source Code 90 90 90 Mean 10.3 13.2 7.08 Minimum Maximum 10.0 127 6.99 6.870 Maximum 10.9 2.56 0.870 B-value (2) (2) (2) (ksi) C1 10.3 13.2 C2 0.339 0.337 0.062 No. Specimens No. Batches 5 6 6 Data Class Screening Screening Screening Minimum 0.375 0.478 0.333 Maximum 0.445 0.525 0.376 G ⁵ 23 C.V.(%) 6.60 3.76 Mean 1 1 1 Data Class Screening Screening Screening Mean 1 1 1 1 Maximum 0.4415 0.			
Temperature (°F) Moisture Content (%) Equilibrium at T, RH 75 -67 180 Moisture Content (%) Equilibrium at T, RH 90 90 90 90 Mean 10.3 13.2 7.08 (1) Minimum 10.0 12.7 6.99 (1) Maximum 10.9 13.7 7.14 (1) C.V.(%) 3.29 2.56 0.870 (1) B-value (2) (2) (2) (2) F ^{su} ₂₃ Distribution Normal Normal Normal (ksi) C1 10.3 13.2 7.08 C2 0.339 0.337 0.062 (2) No. Specimens 5 6 6 (3) Maximum 0.401 0.500 0.349 (3) Minimum 0.375 0.478 0.333 (4) G ⁵ ₂₃ C.V.(%) 6.60 3.76 4.15 (Minimum Mean 0.445 0.525 0.376 (A)			
Equilibrium at T, RH 90 90 90 90 Mean 10.3 13.2 7.08 (1) Minimum 10.0 12.7 6.99 (1) Maximum 10.9 13.7 7.14 (1) C.V.(%) 3.29 2.56 0.870 (1) B-value (2) (2) (2) (2) (2) (ksi) C1 10.3 13.2 7.08 (1) Normal Normal Normal Normal (1) (1) Kisi) C1 10.3 13.2 7.08 (1) (1) No. Specimens 5 6 6 (1) (1) (1) (1) Mean 0.401 0.500 0.349 (1) (1) (1) (1) Maximum 0.375 0.478 0.333 (1) (1) (1) G ² {3} C.V.(%) 6.60 3.76 4.15 (1) (1) (1) <t< td=""><td></td></t<>			
Source Code 90 90 90 90 Mean 10.3 13.2 7.08 10.3 13.2 7.08 10.3 13.2 7.08 10.9 13.7 6.99 10.9 13.7 6.99 10.9 13.7 7.14 10.9 13.2 7.14 10.3 3.29 2.56 0.870 10.3 13.2 7.08 10.3 10.3 13.2 7.08 10.3 10.3 13.2 7.08 10.62 10.3 10.3 10.32 10.37 0.062 10.62 10.3 10.32 10.37 0.062 10.5			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			
No. Batches 1 <t< td=""><td></td></t<>			
Data Class Screening Screening Screening Mean 0.401 0.500 0.349 Minimum 0.375 0.478 0.333 Maximum 0.445 0.525 0.376 G $_{23}^s$ C.V.(%) 6.60 3.76 4.15 (Msi) No. Specimens 6 6 6 No. Batches 1 1 1 Data Class Screening Screening Screening Mean 0.445 0.525 0.376 (Msi)			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
Maximum 0.445 0.525 0.376 G ^s ₂₃ C.V.(%) 6.60 3.76 4.15 (Msi) No. Specimens 6 6 6 No. Specimens 6 6 6 No. Batches 1 1 1 Data Class Screening Screening Screening Mean Maximum C.V.(%) Image: C.V.(%) Image: C.V.(%) B-value Image: C.V.(%) Image: C.V.(%) Image: C.V.(%) Image: C.V.(%)			
G ^s ₂₃ C.V.(%) 6.60 3.76 4.15 (Msi) No. Specimens 6 6 6 No. Specimens 6 6 6 No. Batches 1 1 1 Data Class Screening Screening Screening Mean Maximum C.V.(%) Image: Comparison of the second seco			
(Msi) No. Specimens 6 6 6 No. Batches 1 1 1 Data Class Screening Screening Screening Mean Minimum Maximum C.V.(%) B-value Distribution Image: Screening			
No. Specimens666No. Batches111Data ClassScreeningScreeningMean Minimum Maximum C.V.(%)			
No. Batches 1 1 1 Data Class Screening Screening Screening Mean Minimum Maximum Maximum C.V.(%) B-value Distribution			
Data Class Screening Screening Mean Minimum Maximum C.V.(%) B-value			
Mean Minimum Maximum C.V.(%) B-value			
Maximum C.V.(%) B-value			
C.V.(%) B-value			
B-value			
Distribution			
Distribution			
γ_{23}^{su} Distribution			
$(\mu \varepsilon)$ C_1			
C ₂			
No. Specimens			
No. Batches Data Class			

Conditioned at 160°F and 95 <u>+</u> 2% RH until 1.0% moisture content attained.
 Basis values are presented only for A and B data classes.

4.2.34 800HB 12k/3900-2 unidirectional tape

Material Description:

Material: 800HB 12k/3900-2

Form: Unidirectional tape prepreg, fiber areal weight of 190 g/m², typical cured resin content of 36%-37%, typical cured ply thickness of 0.0075-0.0082 inches.

Processing: Autoclave cure, 350°F, 85 psi, 3°F/minute ramp rate, 2 hours

General Supplier Information:

Fiber: 800HB fibers are continuous, standard modulus, no twist carbon filaments made from a PAN precursor, surface treated to improve handling characteristics and structural properties. Filament count is 12,000 filaments/tow. Typical tensile modulus is 34 x 10⁶ psi. Typical tensile strength is 700,000 psi.

Matrix: 3900-2 is an toughened epoxy resin.

Maximum Short Term Service Temperature: 300°F (dry), 180°F (wet)

Typical applications: General purpose commercial and military aerospace structural applications.

Data Analysis Summary: None

4.2.34 800HB 12k/3900-2 unidirectional tape

MATERIAL:	800H 12k/	/3900-2 unidire	C/Ep 800HB/3900-2 Summary			
FORM:	Toray P23	802-19 unidire	-			
FIBER:	Toray T800HB 12k, 3 tows/inch, siz- ing H, no twist			MATRIX:	Toray 3900-2	2
T _g (dry):	330°F	T _g (wet):	230°F	T _g METHOD:	ASTM E 154	I5 (TMA)
PROCESSING:	Autoclave	cure: 350°F, 8				

Date of fiber manufacture	7/97	Date of testing	1/99-7/99
Date of resin manufacture	7/97	Date of data submittal	12/99
Date of prepreg manufacture	12/97	Date of analysis	1/00
Date of composite manufacture	12/97		

LAMINA PROPERTY SUMMARY

	75/A	-67/A	180/W		
Tension, 1-axis					
Tension, 2-axis					
Tension, 3-axis					
Compression, 1-axis					
Compression, 2-axis					
Compression, 3-axis					
Shear, 12-plane					
Shear, 23-plane	SS	SS	SS		
Shear, 13-plane	SS	SS	SS		
SB Strength, 31-plane	S	S	S		

PHYSICAL PROPERTY SUMMARY

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.81	1.80	ASTM D 3800
Resin Density	(g/cm ³)	1.22		ASTM D 891
Composite Density	(g/cm ³)	1.55	1.56	
Fiber Areal Weight	(g/m ²)	190	191.1	ASTM D 5300
Fiber Volume	(%)	55.5	54.0-55.5	ASTM D 3171
Ply Thickness	(in)	0.0075	0.0075-0.0082	

LAMINATE PROPERTY SUMMARY

MATER	RIAL: 80	0H 12k/3900-2 u	nidirectional tap)e			.2.34(a)
FIBER	VOLUME: 55	5.3 wt.% 5.5 % 1073-0.0074 in.	COMP. D VOID CO		i6 g/cm ³ .10 %	800HB SBS, 3 [0	190-UT /3900-2 1-plane] ³⁴
	METHOD: STM D 2344-84		MODULU N/A	S CALCULATI	ON:		A, 180/W ening
NORM	ALIZED BY: No	t normalized					
Moistur	rature (°F) e Content (%) rium at T, RH Code Mean Minimum	75 Ambient 90 12.7 12.6	-67 Ambient 90 16.7 16.3	180 1.0 (1) 90 7.63 7.55			
	Maximum C.V.(%) B-value	13.1 1.47	17.0 1.34	7.71 0.772			
F ^{sbs} (ksi)	Distribution C1	(2) Normal 12.8	(2) Normal 16.7	(2) Normal 7.63			
	C ₂ No. Specimens No. Batches Data Class	0.187 6 1 Screening	0.223 6 1 Screening	0.059 6 1 Screening			

Conditioned at 160°F and 95 ± 2% RH until 1.0% moisture content attained.
 Short beam strength test data are approved for Screening Data Class only.

MATER	800 NIAL: 800	H 12k/3900-2 ui	nidirectional tap	0e		Table 4.2.34(b) C/Ep 190-UT	
FIBER	VOLUME: 54.0	wt.% % 175-0.0079	COMP. D VOID CO		6 g/cm ³ .10 %	800HB/3900-2 Shear, 13-plane [0] ₁₀₀ 75/A, -67/A, 180/V	
TEST N	IETHOD:		MODULU	S CALCULATI	ON:	Screening	, w
AS	TM D 5379-93		Chord	, 1000 - 3000 μ	£		
NORMA	ALIZED BY: Not	normalized					
	ature (°F)	75	-67	180			
	e Content (%) ium at T, RH	Ambient	Ambient	1.0 (1)			
Source		90	90	90			
	Mean	12.8	18.6	7.20			
	Minimum	12.5	18.2	6.90			
	Maximum C.V.(%)	12.9 1.21	19.3 2.24	7.50 3.11			
	0.1.(/0)			0.111			
	B-value	(2)	(2)	(2)			
F_{13}^{su}	Distribution	Normal	Normal	Normal			
(ksi)	C ₁	12.8	18.6	7.20			
	C ₂	0.155	0.417	0.224			
	No. Specimens	6	6	5			
	No. Batches	1	1	1			
	Data Class	Screening 0.478	Screening 0.598	Screening 0.401			
	Mean Minimum	0.478	0.598	0.401			
	Maximum	0.489	0.630	0.405			
G_{13}^s	C.V.(%)	2.34	3.87	0.872			
(Msi)							
(10101)	No. Specimens	6	6	5			
	No. Batches	1	1	1			
	Data Class	Screening	Screening	Screening			
	Mean Minimum						
	Maximum						
	C.V.(%)						
	B-value						
$\gamma_{13}^{\rm su}$	Distribution						
	C ₁						
(με)	C_1 C_2						
	No. Specimens						
	No. Batches Data Class						

Conditioned at 160°F and 95 <u>+</u> 2% RH until 1.0% moisture content attained.
 Basis values are presented only for A and B data classes.

MATER	RIAL: 800	H 12k/3900-2 u	nidirectional tap	e		Table 4.2.34(c) C/Ep 190-UT		
FIBER	VOLUME: 54.0	3 wt.%) %)78-0.0082	COMP. D VOID CO		6 g/cm ³ .10 %	800HB/3900-2 Shear, 23-plane [0] ₁₀₀ 75/A, -67/A, 180/W		
TEST	METHOD:		MODULU	S CALCULATI	ON:	75/A, -67/A, 180/W Screening		
AS	STM D 5379-93		Chord	, 1000 - 3000 μ	£			
NORM	ALIZED BY: Not	normalized						
	rature (°F)	75	-67	180				
	e Content (%) rium at T, RH	Ambient	Ambient	1.0 (1)				
Source	Code	90	90	90				
	Mean Minimum	6.10 4.79	6.45	4.22				
	Maximum	6.72	4.68 7.27	3.91 4.35				
	C.V.(%)	13.1	13.7	4.24				
	B-value	(2)	(2)	(2)				
F ₂₃ ^{su}	Distribution	Normal	Normal	Normal				
(ksi)	C ₁	6.10	6.45	4.22				
	C ₂	0.801	0.886	0.179				
	No. Specimens	6	7	6				
	No. Batches Data Class	1 Screening	1 Screening	1 Screening				
	Mean	0.317	0.377	0.281				
	Minimum	0.306	0.360	0.258				
	Maximum	0.330	0.399	0.293				
G ^s ₂₃	C.V.(%)	2.94	3.36	4.45				
(Msi)		6	7	6				
	No. Specimens No. Batches	6	7 1	6 1				
	Data Class	Screening	Screening	Screening				
	Mean							
	Minimum Maximum							
	C.V.(%)							
	B-value							
$\gamma_{23}^{\rm su}$	Distribution							
(με)	C ₁							
(j .)	C ₂							
	No. Specimens							
	No. Batches							
	Data Class							

Conditioned at 160°F and 95 <u>+</u> 2% RH until 1.0% moisture content attained.
 Basis values are presented only for A and B data classes.

4.2.35 T650-35 3k/976 plain weave fabric

Material Description:

Material: T650-35 3k / 976

- Form: Plain weave fabric prepreg, fiber areal weight of 194 g/m², typical cured resin content of 40%, typical cured ply thickness of 0.0067 0.0069 inches.
- Processing: Autoclave cure, 350°F, 95 psi, 90 minutes

General Supplier Information:

- Fiber: T650-35 fibers are continuous, no twist carbon filaments made from PAN precursor, surface treated to improve handling characteristics and structural properties. Filament count is 3000 filaments/tow. Typical tensile modulus is 35×10^6 psi. Typical tensile strength is 650,000 psi.
- Matrix: 976 is a high flow, modified epoxy resin that meets the NASA outgassing requirements. 10 days out-time at 72°F.

Maximum Short Term Service Temperature: 350°F (dry), 250°F (wet)

Typical applications: General purpose commercial and military structural applications.

Data Analysis Summary:

1. For transverse tension, a bowtie specimen is an exception to this test method.

4.2.35 T650-35 3k/976 plain weave

MATERIAL:	T650-35 3	k/976 plain we	eave fabric			C/Ep 194-PW T650-35 976 Summary		
FORM:	Cytec Fibe	Cytec Fiberite 976/T650-35 plain weave fabric prepreg						
FIBER:	Amoco T6	50-35 3k, UC	309, no twist	MATRIX:	ICI Fiberite 976			
T _g (dry):	461°F	T _g (wet):	393°F	Tg METHOD:	DMA E'			
PROCESSING:	Autoclave	Autoclave cure 350°F +10/-10°F, 90 min +10/-10 min, 95 psi +5/-5 psi						

Date of fiber manufacture	9/90 — 5/95	Date of testing	7/93 – 10/96
Date of resin manufacture	9/90 - 7/94	Date of data submittal	12/97
Date of prepreg manufacture	6/92 - 8/94	Date of analysis	1/01
Date of composite manufacture	7/93 – 10/96		

LAMINA PROPERTY SUMMARY

	72°F/A	-67°F/A	250°F/W	
Tension, 1-axis	bS	bS	BM	
Tension, 2-axis	BM	BM	BM	
Tension, 3-axis				
Compression, 1-axis	BM	BM	BM	
Compression, 2-axis				
Compression, 3-axis	bS	bS	BM	
Shear, 12-plane	BM	bM	BM	
Shear, 23-plane				
Shear, 31-plane				

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.77	1.76 – 1.78	SRM 15
Resin Density	(g/cm ³)	1.28	1.28	ASTM D 792
Composite Density	(g/cm ³)	1.57	1.55-1.58	
Fiber Areal Weight	(g/m ²)	194	-	
Fiber Volume	(%)	59	58-61	
Ply Thickness	(in)	0.0069	0.0066 - 0.0079	
	(<i>'</i> ,			

PHYSICAL PROPERTY SUMMARY

LAMINATE PROPERTY SUMMARY

MATERI	ΔI · T650)-35 3k 976 plai	n weave fabric	,		Table 4	.2.35(a)
RESIN C FIBER V	:ONTENT: 28 – OLUME: 59 -	- 34 % wt COMP: DENSITY: 1.56-1.58 g/cm ³ 64 vol % VOID CONTENT: 0 – 1% 062-0.0079 in.			C/Ep 1 T650∹ Tensior [0	C/Ep 194-PW T650-35 976 Tension, 1-axis [0 _f] ₁₂ 72/A, -67/A, 250/W	
TEST ME	ETHOD:		MODULUS	S CALCULATIO	N:		8, Mean,
Bow	rtie Specimen - AST	M D 3039 76	Chord	, 1000 - 6000 μι	E	Scre	ening
NORMAL	LIZED BY: Norn	nalized by spec	imen thickness	and batch fiber	areal weight t	o 57%(0.0076 i	n. CPT)
Equilibriu	Content (%) um at T, RH	7 amb	vient	-6 amb	ient	25 1.09- 160,	1.20 85
Source C	Jode	8 Normalized		8 Normalized		80 Normalized	
	Mean	94.4	Measured 103	Normalized 75.4	Measured 82.6	Normalized 106	Measured 113
	Minimum Maximum C.V.(%)	83.3 103 7.05	89.7 116 7.10	65.9 80.9 6.03	73.3 88.7 5.70	93.6 116 6.38	102 125 5.75
F ₁ ^{tu}	B-value Distribution	79.9 Weibull	(1) ANOVA	(1) ANOVA	72.9 Weibull	88.9 ANOVA	98.1 Weibull
(ksi)	$\begin{array}{c} C_1 \\ C_2 \end{array}$	97.35 18.09	7.87 4.08	4.74 3.27	84.2 6.35	6.99 2.50	116 18.9
	No. Specimens No. Batches Data Class	18 3 B18		18 3 B18		30 5 B30	
E_1^t	Mean Minimum Maximum C.V.(%)	10.4 9.91 11.4 4.54	11.2 10.5 11.8 4.32	10.5 10.0 10.7 2.43	11.5 10.7 11.9 3.40	10.7 9.81 11.3 2.82	11.2 10.0 12.4 5.48
(Msi)	No. Specimens No. Batches Data Class	9 3 Screening		9 3 Screening		21 5 Mean	
v_{12}^{t}	Mean No. Specimens No. Batches						
	Data Class Mean Minimum Maximum C.V.(%)						
$\boldsymbol{arepsilon}_1^{ ext{tu}}$	B-value Distribution						
(με)	C ₁ C ₂						
	No. Specimens No. Batches Data Class						

(1) B-basis values calculated from less than five batches of data using the ANOVA method are not presented.

MATERI	AL: T65	0-35 3k 976 pla	in weave fabric	;			4.2.35(b) 194-PW
FIBER VOLUME: 59 - PLY THICKNESS: 0.00		- 34 % wt COMP: DENSITY: 1.56-1.58 g/cm ³ 64 vol % VOID CONTENT: 0 – 1% 062-0.0079 in.		T650-35 976 Tension, 2-axis [90 _f] ₁₂ 72/A, -67/A, 250/W			
TEST ME			MODULU	S CALCULATIC	DN:	B30	, Mean
Bowtie S	pecimen- ASTM D	3039 76	Chord	, 1000-6000 με			
NORMAL	LIZED BY: Nor	malized by spec	cimen thickness	s and batch fibe	r areal weight t	o 57%(0.0076	in. CPT)
Equilibriu	Content (%) um at T, RH	amt	2 pient	amt	67 Dient	1.14 160	50 -1.22), 85
Source C	Code		80		0		30
		Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean Minimum Maximum C.V.(%)	93.7 78.5 106 7.07	101 83.4 118 8.48	74.0 62.1 87.4 8.22	80.8 64.1 108 11.7	98.3 88.5 111 6.02	105 94.3 122 6.98
F_2^{tu}	B-value Distribution	76.4 ANOVA	74.9 ANOVA	57.4 ANOVA	51.4 ANOVA	81.6 ANOVA	82.5 ANOVA
(ksi)	C ₁ C ₂	6.91 2.51	8.98 2.87	6.31 2.64	10.0 2.93	6.17 2.70	7.75 2.90
	No. Specimens No. Batches Data Class	30 5 B30			30 5 B30		80 5 30
E_2^t	Mean Minimum Maximum C.V.(%)	10.0 9.59 10.9 3.40	10.6 9.61 11.9 5.17	9.91 9.46 10.5 3.28	10.6 9.93 11.5 5.32	9.93 9.16 11.0 4.87	10.5 9.57 12.2 7.31
(Msi)	No. Specimens No. Batches Data Class		21 5 ean	21 5 Mean		21 5 Mean	
v_{21}^t	Mean No. Specimens No. Batches						
	Data Class Mean Minimum Maximum C.V.(%)						
$\varepsilon_2^{ m tu}$	B-value Distribution						
(με)	C ₁ C ₂						
	No. Specimens No. Batches Data Class						

MATERIA	1. 7	T650-35	3k 976 plain w	yeave fabric			Table /	.2.35(c)
	L.	1000-00	SK 970 plain w	eave labilic				94 - PW
RESIN CO		28 – 34 9					35 976	
FIBER VC		59 - 64 v		VOID CONT	ENT: 0 – 19	%	Compression, 1-axis	
PLY THIC	KNESS: ().0062-0).0079 in.				[0 _f] ₁₂ 72/A, -67/A, 250/W	
TEST ME	THOD			MODULUS	CALCULATION	۹.		Mean
	и D 3410-87, F	Procedur	e R				200,	linoun
7,011	1007,1	loccuu	СЪ	Chora, h	000-3000 με			
NORMAL	IZED BY:	Normaliz	ed by specime	n thickness ar	nd batch fiber a	areal weight to	57%(0.0076 ir	n. CPT)
Temperate				2		67		50
	Content (%)		amb	pient	amb	pient		- 1.33
	n at T, RH		0	0	0	0		, 85 0
Source Co	Jue		o Normalized	Measured	o Normalized	Measured	o Normalized	Measured
	Mean		96.7	100	93.8	99.6	55.9	59.1
	Minimum		96.7 74.3	71.3	93.8 62.6	99.6 65.5	55.9 43.0	59.1 45.5
	Maximum		108	71.3 114	02.0 116	65.5 121	43.0 75.1	45.5 77.5
	C.V.(%)		8.41	10.6	14.3	121	14.5	13.4
	0.1.(78)		0.41	10.0	14.5	14.0	14.5	13.4
	B-value		78.1	74.8	55.8	60.2	29.8	34.2
cu	Distribution		ANOVA	ANOVA	ANOVA	ANOVA	ANOVA	ANOVA
Fl				-	_		_	-
(ksi)	C ₁		8.30	10.9	14.1	14.7	8.66	8.38
	C ₂		2.23	2.31	2.69	2.69	3.02	2.97
				0		0		0
	No. Specimo		36			6	30 5	
	No. Batches	6	6 B30		6 B30		B30	
	Data Class Mean		8.83	9.53	9.36	9.89	9.15	9.67
	Minimum		8.07	9.53 8.63	9.30 7.78	9.89 8.55	9.15 8.63	9.07
	Maximum		9.52	10.1	10.2	10.6	9.62	10.2
E_1^c	C.V.(%)		4.52	4.11	4.98	4.45	2.77	2.67
E1								
(Msi)	No. Specime	ens	3	0	2	7	2	1
(1001)	No. Batches			5	27 6			5
	Data Class		Me			Mean		ean
	Mean							
	No. Specim							
v_{12}^{t}	No. Batches	6						
	Data Class							
	Mean							
	Minimum							
	Maximum							
	C.V.(%)							
	B-value							
$\varepsilon_2^{\mathrm{cu}}$	Distribution							
_	C							
(με)	C ₁							
	C ₂							
	No. Specim	ens						
	No. Batches							
	Data Class							

		•	eave fabric				.2.35(d) 94-PW	
RESIN CONTENT: 28 - 34 ° FIBER VOLUME: 59 - 64 v PLY THICKNESS: 0.0062-0			VOID CONTENT: 0 – 1%				T650-35 976 Compression, 2-axis [90 _f] ₁₂ 72/A, -67/A, 250/W	
TEST METH	HOD:		MODULUS	CALCULATION	J:		8, Mean,	
	D 3410-87, Procedu	ure B	Chord, 1		ening			
	,		onora, n	000 0000 με				
NORMALIZ	ED BY: Normal	ized by specime	en thickness ar	nd batch fiber a	real weight to	57%(0.0076 ir	n. CPT)	
Temperatur			2	-6			50	
Moisture Co		amb	pient	amb	pient		- 1.33	
Equilibrium		0	0	0	0), 85 10	
Source Coc	e	Normalized	0 Measured	8 Normalized	0 Measured	Normalized	0 Measured	
	Maan							
	Mean Minimum	92.6 79.7	99.1 88.6	88.0 70.5	94.2 78.4	52.5 38.1	56.1	
							40.3	
	Maximum	105	11130	98.9	108	61.0	64.3	
	C.V.(%)	9.23	8.28	10.3	9.77	10.9	10.5	
	B-value	(1)	79.7	69.2	73.6	37.5	41.8	
	Distribution	ANOVA	Weibull	Weibull	Weibull	ANOVA	ANOVA	
F_2^{cu}	DISTIDUTION	ANOVA	Weibuli	VVeibuli	vveibuli	ANOVA	ANOVA	
(ksi)	C ₁	8.93	103	91.89	98.2	5.92	6.05	
	C ₂	12.5	14.0	12.61	12.3	2.53	2.37	
	No. Specimens	1	8	1	8		0	
	No. Batches		3		3		5	
	Data Class		B18		, 18		30	
	Mean	8.82	9.39	8.95	9.62	8.89	9.52	
	Minimum	8.26	8.83	8.13	8.93	8.44	8.81	
	Maximum	9.19	9.84	9.34	9.96	9.40	9.96	
E_2^c	C.V.(%)	3.25	3.87	4.11	3.40	2.68	2.78	
L 2								
(Msi)	No. Specimens		9	9		21		
	No. Batches		3	3		5		
	Data Class	Scree	ening	Scree	ening	Me	ean	
	Mean No. Specimens							
f	No. Batches							
v_{21}^{t}								
	Data Class							
	Mean							
	Minimum							
	Maximum C.V.(%)							
	B-value							
$\varepsilon_2^{\rm cu}$	Distribution							
(με)	C ₁							
(mc)	C ₂							
	No. Specimens No. Batches							
	Data Class							

(1) B-basis values calculated from less than five batches of data using the ANOVA method are not presented.

MATER	RIAL: T6	50-35 3k 976 plair	n weave fabric			Table 4.2 C/Ep 194		
FIBER	VOLUME: 59	– 34 % wt - 64 vol % 062-0.0079 in.	COMP. DE VOID CON		58 g/cm ³	T650-35 976 Shear, 12-plane [+45 _f /-45 _f] _{3s} 72/A, -67/A, 250/W		
TEST N	METHOD:		MODULUS	CALCULATION:		B30, B18, Mean		
AS	STM D 3518-82 (1)		Chord,	0 - 3000 με				
NORM	ALIZED BY: No	t normalized						
	rature (°F)	72	-67	250				
Equilibr	e Content (%) rium at T, RH	Ambient	Ambient	1.15 – 1.25 160,85				
Source		80	80	80		`		
	Mean Minimum	15.0 13.6	17.2 15.3	10.8 9.95				
	Maximum	16.3	17.7	9.95 11.4				
	C.V.(%)	4.93	3.04	3.56				
	B-value	13.0	16.3	9.72				
F_{12}^{su}	Distribution	ANOVA	Weibull	ANOVA				
(ksi)	C ₁ C ₂	0.77 2.58	17.3 58.2	0.40 2.69				
	No. Specimens No. Batches	34 5	18 3	30 5				
	Data Class	B30	B18	B30				
	Mean	0.80	1.01	0.51				
	Minimum	0.73	.95	0.47				
G ^s ₁₂	Maximum C.V.(%)	0.88 4.90	1.08 3.82	0.54 3.73				
(Msi)	No. Specimens	24	18	22				
(-)	No. Batches	5	3	5				
	Data Class	Mean	Mean	Mean				
	Mean Minimum							
	Maximum							
	C.V.(%)							
611	B-value Distribution							
$\gamma_{12}^{\rm su}$								
(με)	C ₁ C ₂							
	No. Specimens No. Batches Data Class							

(1) Test method used ultimate strength at failure.

4.3 CARBON - POLYESTER COMPOSITES

4.4 CARBON - BISMALEIMIDE COMPOSITES

4.4.1 T-300 3k/F650 unidirectional tape

Material Description:

Material: T300 3k/F650 unidirectional tape

- Form: Unidirectional tape, fiber areal weight of 189 g/m², typical cured resin content of 32%, typical cured ply thickness of 0.0070 inches.
- Processing: Autoclave cure; 375°F, 85 psi for 4 hours; postcure at 475°F for 4 hours

General Supplier Information:

- Fiber: T-300 fibers are continuous, no twist carbon filaments made from PAN precursor, surface treated to improve handling characteristics and structural properties. Filament count is 3,000 filaments/tow. Typical tensile modulus is 33 x 10⁶ psi. Typical tensile strength is 530,000 psi.
- Matrix: F650 is a 350°F curing bismaleimide resin. It will retain light tack for several weeks at 70°F.

Maximum Short Term Service Temperature: 500°F (dry), 350°F (wet)

Typical applications: Primary and secondary structural applications.

4.4.1 T-300 3k/F650 unidirectional tape*

MATERIAL:	T-300 3k/F650 unidirectional tape			C/BMI 189-UT T-300/F650 Summary			
FORM:	Hexcel T3T190/F652 unidirectional ta	-					
FIBER:	Toray T-300 3k	MATRIX:	Hexcel F650				
T _g (dry):	600°F T _g (wet):	Tg METHOD:					
PROCESSING:	Autoclave cure: 375°F, 4 hours, 85 psig; Postcure: 475°F, 4 hours, free-standing oven						

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

Date of fiber manufacture	Date of testing	
Date of resin manufacture	Date of data submittal	4/89
Date of prepreg manufacture	Date of analysis	1/93
Date of composite manufacture		

LAMINA PROPERTY SUMMARY

	75°F/A	-67°F/A	400°F/A		
Tension, 1-axis	SS	S	SS		
Tension, 2-axis					
Tension, 3-axis					
Compression, 1-axis					
Compression, 2-axis					
Compression, 3-axis					
Shear, 12-plane					
Shear, 23-plane					
Shear, 31-plane					
SB Strength, 31-plane	S		S		

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.76		
Resin Density	(g/cm ³)	1.27		
Composite Density	(g/cm ³)	1.56	1.57	
Fiber Areal Weight	(g/m ²)	189		
Fiber Volume	(%)	59	61	
Ply Thickness	(in)	0.0070		

LAMINATE PROPERTY SUMMARY

	E 1989). ALL DOC			REQUIRED WA	AS NOT SUPP		
MATERIA	AL: T-30	0 3k/F650 unidi	rectional tape				4.4.1(a)
RESIN CO	ONTENT: 32 w	H0/	COMP: DE		189-UT /F650		
FIBER V			VOID CON		n, 1-axis		
PLY THIC		。 70 in.] ₆
	0.00						/A, 400/A
TEST ME	THOD:		MODULUS	S CALCULATIO	N:		ening
AST	M D 3039-76						
NORMALIZED BY: Fiber volume to 60% (0.0070 in. CPT)							
Temperat	ture (°F)	7:		-6		40	
	Content (%)	amb	ient	amb	ient	ambi	ient
Equilibriu Source C	m at T, RH	2	1	2	1	2	
Source C	oue	2 Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean	248	252	194	197	229	233
	Minimum	216	220	167	170	216	220
	Maximum	293	298	212	216	243	247
	C.V.(%)	7.14	7.15	8.68	8.68	3.97	3.97
		<i>(</i> .)					
t 12	B-value	(1)	(1)	(1)	(1)	(1)	(1)
F_1^{tu}	Distribution	Normal	Normal	Normal	Normal	Normal	Normal
(ksi)	C ₁	248	252	194	197	229	233
	C ₂	17.7	18.0	16.8	17.1	11.1	9.24
	No. Specimens	1:	=	1:	5	7	
	No. Batches	1		1		7	
	Data Class	Scree		Scree		Screening	
	Mean	18.9	19.2		0	19.1	19.4
	Minimum	16.5	16.8			16.8	17.1
	Maximum	20.3	20.6			21.0	21.4
E_1^t	C.V.(%)	5.58	5.49			7.26	7.23
(Msi)	No. Specimens	1:				9	
	No. Batches Data Class	1 Scree				1 Scree	
	Mean	30106	anny			30100	a in ig
	No. Specimens						
v_{12}^{t}	No. Batches						
r 12	Data Class						
	Mean						
	Minimum						
	Maximum						
	C.V.(%)						
	_						
tu	B-value						
$arepsilon_1^{ ext{tu}}$	Distribution						
(με)	C ₁						
	C ₂						
	No. On column						
	No. Specimens No. Batches						
	Data Class						
L	5414 51455						

(1) Basis values are presented only for A and B data classes.

MATERIA			3k/F650 unidirectional tape Table 4.4.1(b)					
RESIN CC FIBER VC PLY THIC	DLUME: KNESS:	32 wt% 61 % 0.0070 in.	V	COMP: DENSITY: OID CONTENT:	-		C/BMI 189-UT T-300/F650 SBS, 31-plane [0]₃₄ 75/A, 400/A	
TEST ME			N	IODULUS CALCI	ULATION:		Screening	
ASTN	/I D 2344							
NORMALI	ZED BY:	Not norma	alized					
Temperate			75	400				
	Content (%)		ambient	ambient				
Source Co	n at T, RH ode		21	21				
000.00000	Mean		14.1	9.39				
	Minimum		13.5	8.77				
	Maximum	n	15.0	10.1				
	C.V.(%)		3.04	4.25				
	B-value		(1)	(1)				
F_{31}^{sbs}	Distributio	on	Weibull	Weibull				
(ksi)	C ₁		14.3	9.59				
	C ₂		32.3	24.6				
	No. Spec		15	15				
	No. Batch		1 Concentiner	1 Cara anim m				
	Data Clas	SS	Screening	Screening				

(1) Basis values are presented only for A and B data classes.

4.4.2 T-300 3k/F650 8-harness satin weave fabric

Material Description:

Material: T300 3k/F650

- Form: 8 harness satin weave fabric, fiber areal weight of 370 g/m², typical cured resin content of 40%, typical cured ply thickness of 0.015 inches.
- Processing: Autoclave cure; 375°F, 85 psi for 4 hours; postcure at 475°F for 4 hours

General Supplier Information:

- Fiber: T-300 fibers are continuous, no twist carbon filaments made from PAN precursor, surface treated to improve handling characteristics and structural properties. Filament count is 3,000 filaments/tow. Typical tensile modulus is 33 x 10⁶ psi. Typical tensile strength is 530,000 psi.
- Matrix: F650 is a 350°F curing bismaleimide resin. It will retain light tack for several weeks at 70°F.

Maximum Short Term Service Temperature: 500°F (dry), 350°F (wet)

Typical applications: Primary and secondary structural applications.

4.4.2 T-300 3k/F650 8-harness satin weave fabric*

MATERIAL:	T-300 3k/F650 8-harness satin wea	C/BMI 370-8HS T-300/F650 Summary					
FORM:	Hexcel F3T584/F650 8-harness sat	Hexcel F3T584/F650 8-harness satin weave fabric prepreg					
FIBER:	Toray T-300 3k	MATRIX:	Hexcel F650				
T _g (dry):	600°F T _g (wet):	Tg METHOD:					
PROCESSING:	Autoclave cure: 375°F, 4 hours, 85	Autoclave cure: 375°F, 4 hours, 85 psig; Postcure: 475°F, 4 hours, free-standing oven					

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

Date of fiber manufacture	Date of testing	
Date of resin manufacture	Date of data submittal	4/89
Date of prepreg manufacture	Date of analysis	1/93
Date of composite manufacture		

LAMINA PROPERTY SUMMARY

	75°F/A	350°F/A	450°F/A		
Tension, 1-axis					
Tension, 2-axis					
Tension, 3-axis					
Compression, 1-axis					
Compression, 2-axis					
Compression, 3-axis					
Shear, 12-plane	SS				
Shear, 23-plane					
Shear, 31-plane					
SB Strength, 31-plane	S	S	S		

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.75		
Resin Density	(g/cm ³)	1.27		
Composite Density	(g/cm ³)	1.54		
Fiber Areal Weight	(g/m ²)	370		
Fiber Volume	(%)	56	52	
Ply Thickness	(in)	0.015		

LAMINATE PROPERTY SUMMARY

MATERIA	· · · · · · · · · · · · · · · · · · ·		satin weave fabric		Table 4.4.2(a)
RESIN CO FIBER VO PLY THIC	DLUME: 52 %	N	Comp: Density: /OID Content:	1.51 g/cm ³	C/BMI 370-8HS T-300/F650 Shear, 12-plane [±45 _f] _{4s} 75/A
	TEST METHOD: MODULUS CALCULATION:				Screening
AST	M D 3518-76				
NORMAL	IZED BY: Not nor	malized			
Temperat		75			
	Content (%)	ambient			
Equilibriur Source Co	n at T, RH ode	21			
	Mean	9.77			
	Minimum	8.57			
	Maximum	11.1			
	C.V.(%)	8.78			
	B-value	(1)			
F_{12}^{su}	Distribution	Weibull			
(ksi)	C ₁	10.2			
()	C ₂	12.9			
	No. Specimens	15			
	No. Batches	1			
	Data Class	Screening			
	Mean Minimum	0.69 0.59			
	Maximum	0.81			
G_{12}^s	C.V.(%)	10			
(Msi)	No. Specimens	14			
	No. Batches Data Class	1 Screening			
	Mean	Screening			
	Minimum				
	Maximum				
	C.V.(%)				
	B-value				
γ_{12}^{su}	Distribution				
712 (με)	C ₁				
(pic)	C ₂				
	No. Specimens				
	No. Batches				
	Data Class				

(1) Basis values are presented only for A and B data classes.

MATERIA	1			satin weave fabric		JPPLIED FOR THIS MATERIAL Table 4.4.2(b) C/BMI 370-8HS
RESIN CC FIBER VO PLY THIC	DLUME:	40 wt% 52 % 0.015 in.	C V	T-300/F650 SBS, 31-plane [0 _f] ₈ 75/A, 350/A, 450/A		
TEST MET	THOD:		N	IODULUS CALCU	JLATION:	Screening
ASTM	/I D 2344					
NORMALI	ZED BY:	Not norma	alized			
Temperatu			75	350	450	
	Content (%)		ambient	ambient	ambient	
Equilibriun Source Cc	n at T, RH		21	21	21	
	Mean		5.83	5.59	5.80	
	Minimum		4.75	4.93	5.23	
	Maximum		8.06	6.44	6.57	
	C.V.(%)		15.0	10.9	6.81	
	B-value		(1)	(1)	(1)	
F ₃₁ ^{sbs}	Distribution		Nonpara.	Weibull	Weibull	
(ksi)	C ₁		8	5.86	5.98	
(noi)	C_2		1.54	11.0	15.5	
	No. Specim	ens	15	10	10	
	No. Batches		1	1	1	
	Data Class	_	Screening	Screening	Screening	

(1) Short beam strength test data are approved for Screening Data Class only.

4.4.3 T-300 3k/F652 8-harness satin weave fabric

Material Description:

Material: T300 3k/F652

- Form: 8 harness satin weave fabric, fiber areal weight of 367 g/m², typical cured resin content of 27%, typical cured ply thickness of 0.0124 inches.
- Processing: Press cure, 400°F, 2.5 hours, 125 psi; postcure at 550°F, 4 hours

General Supplier Information:

- Fiber: T-300 3K fibers are continuous, no twist carbon filaments made from PAN precursor, surface treated to improve handling characteristics and structural properties. Filament count is 3,000 filaments/tow. Typical tensile modulus is 33 x 10⁶ psi. Typical tensile strength is 530,000 psi.
- Matrix: F652 is a bismaleimide resin that has been modified from F650 to reduce the flow of the resin. The lower flow allows the resin to be used in press forming operations and also for high temperature honeycomb. The properties are equivalent to F650.

Maximum Short Term Service Temperature: 500°F (dry), 350°F (wet)

Typical applications: Primary and secondary structural applications.

4.4.3 T-300 3k/F652 8-harness satin weave fabric*

MATERIAL:	T-300 3k/F6	T-300 3k/F652 8-harness satin weave fabric							
FORM:	Hexcel F3G	Hexcel F3G584/F652 8-harness satin weave fabric prepreg							
FIBER:	Amoco Tho	rnel T-300	MATRIX:	Hexcel F652					
T _g (dry):	600°F	T _g (wet):	T _g METHOD:						
PROCESSING:	Press cured	l: 400°F, 2.5 hours	s, 125 psig; Postcure: 550°F	, 4 hours					

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

Date of fiber manufacture	Date of testing	
Date of resin manufacture	Date of data submittal	4/89
Date of prepreg manufacture	Date of analysis	1/93
Date of composite manufacture		

LAMINA PROPERTY SUMMARY

	70°F/A	600°F/A			
Tension, 1-axis	SS				
Tension, 2-axis					
Tension, 3-axis					
Compression, 1-axis					
Compression, 2-axis					
Compression, 3-axis					
Shear, 12-plane					
Shear, 23-plane					
Shear, 31-plane					
SB Strength, 31-plane	S	S			

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.76		
Resin Density (g/cm ³)		1.26		
Composite Density	(g/cm ³)	1.55	1.57	
Fiber Areal Weight	(g/m ²)	367		
Fiber Volume	er Volume (%)		64.8	
Ply Thickness	(in)	.00124		

LAMINATE PROPERTY SUMMARY

MATERIAL:	T-300 3k/F652 8-han	ness satin weave fabric
RESIN CONTENT: FIBER VOLUME: PLY THICKNESS:	27.2 wt% 64.8 % 0.012 in.	COMP: DENSITY: VOID CONTENT:

 1.57 g/cm^3 COMP: DENSITY: VOID CONTENT:

MODULUS CALCULATION:

Table 4.4.3(a) C/BMI 367-8HS T-300/F652 Tension, 1-axis **[O**f]10 70/A Screening

TEST METHOD: ASTM D 3039-76

Batch fiber volume to 57% (0.012 in. CPT) NORMALIZED BY:

Temperature (°F) Moisture Content (%)		ontent (%) ambient					
Equilibrium at T, RH		_					
Source C	Code	2					
	Mean	Normalized 73.6	Measured 84.0	Normalized	Measured	Normalized	Measured
	Minimum Maximum C.V.(%)	58.8 84.3 10.1	67.1 96.1 10.0				
F_1^{tu}	B-value Distribution	(1) Weibull	(1) Weibull				
(ksi)	C ₁ C ₂	76.8 12.3	87.6 12.4				
	No. Specimens No. Batches Data Class	1: 1 Scree					
E_1^t	Mean Minimum Maximum C.V.(%)	9.71 8.94 10.2 4.36	11.1 10.2 11.6 4.28				
(Msi)	No. Specimens No. Batches Data Class	1: 1 Scree					
v_{12}^{t}	Mean No. Specimens No. Batches Data Class						
	Mean Minimum Maximum C.V.(%)						
${oldsymbol{arepsilon}}_1^{ ext{tu}}$	B-value Distribution						
(με)	C ₁ C ₂						
	No. Specimens No. Batches Data Class						

(1) Basis values are presented only for A and B data classes.

MATERIA				satin weave fabric	Table 4.4.3(b) C/BMI 367-8HS)	
RESIN CO FIBER VO PLY THIC	DLUME:	27.2 wt% 64.8 % 0.0012 in	V	OMP: DENSITY: OID CONTENT:	T-300/F652 SBS, 31-plane [0 _f] ₁₀ 70/A, 600/A		
TEST ME			N	IODULUS CALCI	JLATION:	Screening	
	M D 2344						
NORMAL	IZED BY:	Not norm	alized				
Temperat			70	600			
	Content (%) m at T, RH		ambient	ambient			
Source Co			21	21			
	Mean		5.97	4.59			
	Minimum Maximum		5.13 6.64	4.29 4.82			
	C.V.(%)	•	8.17	3.60			
	B-value		(1)	(1)			
F ₃₁ ^{sbs}	Distributio	on	Weibull	Weibull			
(ksi)	C ₁		6.18	4.66			
	C ₂		14.8	36.8			
	No. Spec		15	15			
	No. Batch Data Clas		1 Screening	1 Screening			
	Data Ola	33	Corcerning	Ocicering			

(1) Basis values are presented only for A and B data classes.

4.4.4 AS4/5250-3 unidirectional tape

Material Description:

Material: AS4/5250-3

Form: Unidirectional tape, fiber areal weight of 147 g/m², typical cured resin content of 26-38%, typical cured ply thickness of 0.0055 inches.

Processing: Autoclave cure; 250°F, 85 psi, 1 hour; 350°F, 85 psi, 6 hours; postcure; 475°F, 6 hours.

General Supplier Information:

- Fiber: AS4 fibers are continuous carbon filaments made from PAN precursor, surface treated to improve handling characteristics and structural properties. Typical tensile modulus is 34×10^6 psi. Typical tensile strength is 550,000 psi.
- Matrix: 5250-3 is a modified bismaleimide resin possessing good hot/wet strength and improved toughness over standard bismaleimides. Good high temperature resistance.

Maximum Short Term Service Temperature: 450°F (dry), 350°F (wet)

Typical applications: Primary and secondary structural applications on commercial and military aircraft.

Data Analysis Summary:

1. Data are from publicly available report, Reference 4.4.4.

4.4.4 AS4/5250-3 unidirectional tape*

MATERIAL:	AS4/5250	AS4/5250-3 unidirectional tape								
FORM:	Narmco A	Narmco AS4/5250-3 unidirectional tape, grade 147 prepreg								
FIBER:	Hercules AS4			MATRIX:	Narmco 5250-3					
T _g (dry):	642°F	T _g (wet):	561°F	Tg METHOD:	DMA					
PROCESSING:	Autoclave	cure: 250°F,	60 minutes; 3	350°F, 360 minutes,	85 psi; Postcure: 475°	F, 6 hours				

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

Date of fiber manufacture	Date of testing	
Date of resin manufacture	Date of data submittal	12/88
Date of prepreg manufacture	Date of analysis	1/93
Date of composite manufacture		

	72°F/A	-67°F/A	350°F/A	450°F/A	74°F/W	350°F/W
Tension, 1-axis	SSSS	SSSS	SSSS	SSSS	SSSS	SSSS
Tension, 2-axis	SS-S	SS-S	SS-S	SS-S		
Tension, 3-axis						
Compression, 1-axis	SS-S	SS-S	SS-S	SS-S	SS-S	SS-S
Compression, 2-axis						
Compression, 3-axis						
Shear, 12-plane	SS	SS	SS	SS	SS	SS
Shear, 23-plane						
Shear, 31-plane						

LAMINA PROPERTY SUMMARY

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.80		
Resin Density	(g/cm ³)	1.25		
Composite Density	(g/cm ³)	1.58	1.52 - 1.63	
Fiber Areal Weight	(g/m ²)	147	132 - 165	ASTM D 3529
Fiber Volume	(%)	60	51 - 66	
Ply Thickness	(in)	0.0051 - 0.0059	0.0050 - 0.0062	

LAMINATE PROPERTY SUMMARY

MATERIA	Table	4.4.4(a)								
FIBER VO PLY THIC	OLUME: 63-6 CKNESS: 0.00	IE: 63-66 % VOID CONTENT: 0.1-0.9% SS: 0.0050-0.0053 in.		/AS4 Tensio [72/A, -6	147-UT 5250-3 n, 1-axis 0] ₈ 7/A, 350/A					
TEST ME			MODULU	S CALCULATIO	JN:	Scre	ening			
AST	ASTM D 3039-76									
NORMALIZED BY: Specimen thickness and batch fiber volume to 60% (0.0055 in. CPT)										
Tempera		72			67		50			
	Content (%) Im at T, RH	amb	ient	amt	pient	amt	pient			
Source C		(1)	(1)	(*	1)			
		Normalized	Measured	Normalized	Measured	Normalized	Measured			
	Mean	252	291	270	311	266	308			
	Minimum	223	255	249	285	241	276			
	Maximum	275	322	288	332	283	325			
	C.V.(%)	7.63	8.48	6.12	6.48	6.87	7.54			
F ₁ ^{tu}	B-value Distribution	(2) Normal	(2) Normal	(2) Normal	(2) Normal	(2) Normal	(2) Nonpara.			
(ksi)		252	291	270	312	266	5			
(KSI)	C ₁ C ₂	19.2	291	16.5	20.2	18.3	3.06			
	02	10.2	2	10.0	20.2	10.0	0.00			
	No. Specimens	6			6		6			
	No. Batches	1		1 Correction			1.			
	Data Class	Scree 15.9		Screening		Screening				
	Mean Minimum	15.9	18.3 17.7	16.4 15.9	18.9 18.5	16.4 15.8	19.0 18.2			
	Maximum	16.4	18.9	16.8	19.4	16.7	19.5			
E_1^t	C.V.(%)	3.04	2.51	2.23	1.91	2.07	2.85			
(Msi)	No. Specimens	6	5		6	(6			
. ,	No. Batches	1		1		1				
	Data Class	Scree		Screening		Scre	ening			
	Mean		0.300	.	0.295		0.302			
, t	No. Specimens No. Batches	6		6 1			6 1			
v_{12}^{t}		-			•	0				
	Data Class	Scree		Scre	ening	Scre	ening 15000			
	Mean Minimum		17100 14900		15800 14100		15900 14800			
	Maximum		20000		18000		17100			
	C.V.(%)		13.3		9.6		4.98			
	5 .									
fu	B-value		(2) Normal		(2) Normal		(2) Normal			
$arepsilon_1^{ ext{tu}}$	Distribution		Normal		Normal		Normal			
(με)	C ₁		17100		15800		15900			
	C ₂		2270		1520		789			
	No. Specimens	6			6		6			
	No. Batches	1			1		1			
	Data Class	Scree			ening	Scre	ening			
					.					

(1) Reference 4.4.4.

(2) Basis values are presented only for A and B data classes.

	(JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL ATERIAL: AS4/5250-3 unidirectional tape Table 4.4.4(b) C/BMI 147-UT									
FIBER V	OLUME: 63-6	/IE: 63-67 % VOID CONTENT: 0.0-0.9%				AS4/5250-3 Tension, 1-axis [0] ₈ 450/A, 74/W, 350/W				
TEST ME	THOD:		MODULUS	S CALCULAT	ION:		eening			
AST	M D 3039-76									
NORMAL	IZED BY: Spe	cimen thickness	and batch fibe	er volume to 6	0% (0.0055 in. C	PT)				
Equilibriu	Content (%) m at T, RH	45 amb	ient		74 0.70 °F, 95%	0.	50 73 1)			
Source C	ode	(2 Normalized	<u>)</u> Measured	Normalized	(2) Measured	Normalized	2) Measured			
	Mean Minimum Maximum C.V.(%)	253 208 269 8.87	292 237 314 9.64	268 235 293 7.74	312 268 347 8.99	249 232 261 4.50	287 264 305 5.42			
F_1^{tu}	B-value Distribution	(3) Nonpara.	(3) Normal	(3) Normal	(3) Normal	(3) Normal	(3) Normal			
(ksi)	C ₁ C ₂	5 3.06	292 28.1	268 20.7	312 28.1	249 11.2	288 15.6			
	No. Specimens No. Batches Data Class	6 1 Screening		6 1 Screening		5 1 Screening				
\mathbf{E}_1^{t}	Mean Minimum Maximum C.V.(%)	16.5 15.7 16.9 3.43	19.0 18.1 19.7 3.56	16.6 16.2 17.3 2.36	19.3 18.9 19.9 1.82	15.9 15.4 16.4 2.41	18.4 17.8 19.1 2.71			
(Msi)	No. Specimens No. Batches Data Class	6 1 Scree		6 1 Screening		5 1 Screening				
v_{12}^t	Mean No. Specimens No. Batches	6	0.295	0.335 6 1		0.368 5 1				
	Data Class Mean Minimum Maximum C.V.(%)	Scree	ening 13900 11700 15000 8.14	Scr	eening 15200 13500 16600 7.14	Scre	ening 14900 13200 15500 6.46			
$arepsilon_1^{ ext{tu}}$	B-value Distribution		(3) Normal		(3) Normal		(3) Normal			
(με)	C ₁ C ₂		13900 1130		15200 1080		14900 961			
	No. Specimens No. Batches	6		-	6 1		6 1 _.			
	Data Class	Scree 5% relative hum			eening	Scre	ening			

(1) Conditioned at 160°F, 95% relative humidity for 29 days (75% saturation).

(2) Reference 4.4.4.

(3) Basis values are presented only for A and B data classes.

MATERIA		5250-3 unidirec					Table	4.4.4(c) 147-UT
FIBER V	OLUME: 63-6	28 wt% COMP: DENSITY: 1.61 g/cm ³ 56 % VOID CONTENT: 0.1-0.9% 50-0.0053 in. 50-0.0053 in. 1.000000000000000000000000000000000000				AS4/5250-3 Tension, 1-axis [0] ₈ 350/W		
	ETHOD: M D 3039-76		MODULU	S CALCULA		N:		ening
		cimen thickness	and batch fibe	ar volume to	60%	(0.0055 in .C		
Tempera		35			0070		• •)	
Moisture	Content (%) ım at T, RH	1.0 160°F, (1) 95%					
		Normalized	Measured	Normalize	ed	Measured	Normalized	Measured
	Mean Minimum Maximum C.V.(%)	235 176 259 12.8	270 202 296 13.0					
F_1^{tu}	B-value Distribution	(2) Normal	(2) Normal					
(ksi)	C ₁ C ₂	235 29.9	270 35.1					
	No. Specimens No. Batches Data Class	6 1 Scree						
E_1^t	Mean Minimum Maximum C.V.(%)	16.7 15.5 18.4 6.43	19.2 17.7 21.2 6.26					
(Msi)	No. Specimens No. Batches Data Class	6 1 Scree	ning					
v ₁₂ ^t	Mean No. Specimens No. Batches Data Class	4 Scree	0.363					
	Mean Minimum Maximum C.V.(%)	0000	14400 9950 16200 16.0					
$arepsilon_1^{ ext{tu}}$	B-value Distribution		(2) Normal					
(με)	C ₁ C ₂		14400 2300					
	No. Specimens No. Batches Data Class	6 1 Scree	ning					

(1) Reference 4.4.4.

(2) Basis values are presented only for A and B data classes.

Т

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATER	RIAL: AS4	/5250-3 unidire	ctional tape			Table 4.4.4(d)
FIBER	VOLUME: 51-6	0 wt% 5 % 51-0.0059 in.	Comp: D Void Coi		2-1.61 g/cm ³ -0.8%	C/BMI 147-UT AS4/5250-3 Tension, 2-axis [90] ₈ 72/A, -67/A, 350/A, 450/A
			MODULU	S CALCULATIO	ON:	Screening
AS	STM D 3039-76					
NORM	ALIZED BY: Not	normalized				
Moistur	rature (°F) e Content (%) rium at T, RH	72 ambient	-67 ambient	350 ambient	450 ambient	
Source		(2)	(2)	(2)	(2)	
	Mean	4.61	4.98	4.63	4.54	
	Minimum	3.52	4.68	3.43	4.13	
	Maximum C.V.(%)	5.65 18.4	5.94 9.69	5.33 13.7	5.19 9.20	
	 (/0)	10.4	0.00	10.7	0.20	
F ₂ ^{tu}	B-value Distribution	(1) Normal	(1) Nonpara.	(1) Normal	(1) Normal	
(ksi)	C ₁	4.61	5	4.63	4.54	
	C ₂	0.847	3.06	0.637	0.417	
	No. Specimens	6	6	6	6	
	No. Batches Data Class	1 Screening	1 Screening	1 Screening	1 Screening	
	Mean	1.24	1.40	1.04	1.08	
	Minimum	1.17	1.26	0.940	0.930	
	Maximum	1.35	1.47	1.16	1.26	
E_2^t	C.V.(%)	5.90	5.50	8.50	10.3	
(Msi)	No. Specimens	6	6	5	6	
	No. Batches Data Class	1 Screening	1 Screening	1 Screening	1 Screening	
	Mean	Screening	Scieering	Screening	Screening	
v_{21}^{t}	No. Specimens No. Batches					
21	Data Class					
	Mean	3540	3580	4680	4330	
	Minimum	2000 4900	3180	3300	3600	
	Maximum C.V.(%)	4900 26.9	4740 16.5	6000 19.0	5600 18.0	
tu	B-value	(1)	(1)	(1)	(1)	
$\varepsilon_2^{\mathrm{tu}}$	Distribution	Normal	Lognormal	Normal	Normal	
(με)	C ₁ C ₂	3540 955	8.17 0.149	4680 889	4330 782	
	No. Specimens No. Batches	6	6 1	6 1	6 1	
	Data Class	Screening	Screening	Screening	Screening	
			. 0		U U	I

(1) Basis values are presented only for A and B data classes.

(2) Reference 4.4.4.

MATERIA	AL: AS4	Table	4.4.4(e)					
FIBER V	OLUME: 53-5	36-38 wt%COMP: DENSITY:1.55 g/cm353-56 %VOID CONTENT:0.1-0.9%0.0057-0.0062 in.				C/BMI 147-UT AS4/5250-3 Compression, 1-axis [0] ₈ 72/A, -67/A, 350/A		
TEST ME			MODULUS	S CALCULATIC	N:		ening	
ASTM D 3410A-87								
NORMAL	LIZED BY: Spe	cimen thickness	and batch fibe	er volume to 609	% (0.0055 in. C	PT)		
	Content (%)	7: amb		-e amb	57 bient	35 amb		
Source C	ım at T, RH Code	(1)	(1	1)	(1	1)	
		Normalized	Measured	Normalized	Measured	Normalized	Measured	
	Mean Minimum Maximum C.V.(%)	175 122 203 15.9	158 110 184 15.9	198 176 222 8.0	179 160 201 8.0	174 141 235 23.6	148 127 185 15.9	
F ₁ ^{cu}	B-value Distribution	(2) Normal	(2) Normal	(2) Normal	(2) Normal	(2) Normal	(2) Normal	
(ksi)	C ₁ C ₂	175 27.7	158 25.1	198 15.8	179 14.3	174 41.1	149 23.6	
	No. Specimens No. Batches Data Class	6 1 Screening		6 1 Screening		6 1 Screening		
	Mean	17.0	15.4	15.5	14.0	17.4	14.9	
E_1^c	Minimum Maximum C.V.(%)	14.1 22.7 20.1	12.8 20.5 20.0	13.9 18.5 10.7	12.6 16.7 10.6	15.2 21.9 14.7	13.8 17.2 8.55	
(Msi)	No. Specimens	F	3	e	3	6	3	
(11101)	No. Batches Data Class	6 1 Screening		1 Screening		1 Screening		
v_{12}^{c}	Mean No. Specimens No. Batches							
	Data Class Mean Minimum Maximum C.V.(%)		12100 8000 22700 46.2		19800 8360 26700 43.9		15300 10200 18400 18.1	
_cu	B-value Distribution		(2) Normal		(2) Normal		(2) Normal	
ε ₁ ^{cu} (με)	C_1 C_2		12100 5570		19800 8710		15300 2770	
	No. Specimens No. Batches	6	6	6	6	6	3	
	Data Class	Scree		Scree		Scree		

(1) Reference 4.4.4.

(2) Basis values are presented only for A and B data classes.

MATERIA	AL: AS	4/5250-3 unidirec	tional tape		Table 4.4.4(f) C/BMI 147-UT						
RESIN CO FIBER VO PLY THIO	OLUME: 53-	38 wt% 56 % 057-0.0062 in.	6 % VOID CONTENT: 0.1-0.9%			AS4/5250-3 Compression, 1-axis [0] ₈ 450/A, 74/W, 350/W					
TEST ME	THOD:		MODULUS	S CALCULATIO	ON:	450/A, 74/V Screer					
AST	M D 3410A-87				_						
NORMAL	NORMALIZED BY: Specimen thickness and batch fiber volume to 60% (0.0055 in. CPT)										
Temperat	ture (°F) Content (%)	45 ambi			74 .82	35 0.7					
	m at T, RH	ambi	ent		.02 F, 95%	(1					
Source C	ode	(2)			2) Magazurad	(2	/				
	Mean	Normalized 153	Measured 131	Normalized 194	Measured 176	Normalized 153	Measured 139				
	Minimum	119	108	175	159	113	102				
	Maximum	207	163	216	195	173	157				
	C.V.(%)	21.2	15.1	8.6	8.63	15.5	15.5				
	B-value	(3)	(3)	(3)	(3)	(3)	(3)				
F_1^{cu}	Distribution	Normal	Normal	Normal	Normal	Normal	Normal				
(ksi)	C ₁	153	131	194	176	153	139				
	C ₂	32.4	19.7	16.7	15.2	23.8	21.5				
	No. Specimens	6			6	5					
	No. Batches	1 Screening		1 Screening		1 Screening					
	Data Class Mean	18.2	15.6	18.5	ening 16.8	16.1	ning 14.6				
	Minimum	14.0	12.6	16.4	14.9	14.3	12.9				
	Maximum	21.7	17.1	21.5	19.5	18.2	16.5				
E_1^c	C.V.(%)	16.0	10.4	9.42	9.39	9.78	9.75				
(Msi)	No. Specimens	6			6	5					
(10101)	No. Batches	1		1		1					
	Data Class	Scree	ning	Screening		Scree	ning				
<i>v</i> ₁₂ ^c	Mean No. Specimens No. Batches										
	Data Class										
	Mean		8480		15900		12600				
	Minimum Maximum		2900 14600		10600 22900		6400 16000				
	C.V.(%)		44.7		32.5		30.2				
	B-value		(3)		(3)		(3)				
$arepsilon_1^{ m cu}$	Distribution		Normal		Normal		Normal				
(με)	C ₁		8480		15900		12600				
(,)	C ₂		3790		5170		3810				
	No. Specimens	6			6	5					
	No. Batches	1			1	1					
	Data Class	Scree			ening	Scree	ening				

(1) Conditioned at 160°F, 95% relative humidity for 7 days (75% saturation).

(2) Reference 4.4.4.(3) Basis values are presented only for A and B data classes.

MATERI		/5250-3 unidired	Table 4.4.4(g)				
FIBER V						C/BMI 147-UT AS4/5250-3 Compression, 1-axis [0] ₈ 350/W	
TEST ME	ETHOD:		MODULU	S CALCU		l:	Screening
AST	M D 3410A-87						
NORMAL	LIZED BY: Spe	cimen thickness	and batch fibe	er volume	to 60%	(0.0055 in. C	PT)
	Content (%) Im at T, RH	35 1. 160°F (1	0 , 95%				
		Normalized	Measured	Normal	ized	Measured	Normalized Measured
	Mean Minimum Maximum C.V.(%)	127 108 152 11.4	115 97.9 138 11.4				
F ₁ ^{cu}	B-value Distribution	(2) Normal	(2) Normal				
(ksi)	C ₁ C ₂	127 14.4	115 13.0				
	No. Specimens No. Batches Data Class	6 1 Scree					
E_1^c	Mean Minimum Maximum C.V.(%)	18.1 16.6 20.7 7.93	16.4 15.0 18.7 7.89				
(Msi)	No. Specimens No. Batches Data Class	6 1 Scree					
v_{12}^{c}	Mean No. Specimens No. Batches						
	Data Class Mean Minimum Maximum C.V.(%)		8120 6600 9180 11.5				
$\varepsilon_1^{ m cu}$	B-value Distribution		(2) Normal				
(με)	C ₁ C ₂		8120 934				
	No. Specimens No. Batches Data Class	6 1 Scree					

Reference 4.4.4.
 Basis values are presented only for A and B data classes.

MATERIA		CUMENTATION PRI 4/5250-3 unidirection	Tab	ole 4.4.4(h)		
RESIN CC FIBER VO PLY THIC	LUME: 59-	28-32 wt% COMP: DENSITY: 1.58-1.61 g/cm ³ 59-63 % VOID CONTENT: 0.0-1.2% 0.0055-0.0058 in. VOID CONTENT: 0.0-1.2%				MI 147-UT S4/5250-3 ar, 12-plane [±45] _{4s} -67/A, 350/A,
TEST MET		S	450/A creening			
ASTM	I D 3518-76					
NORMALI	ZED BY: Not	normalized				
Temperatu		72	-67	350	450	
Moisture C Equilibriun	Content (%)	ambient	ambient	ambient	ambient	
Source Co		(1)	(1)	(1)	(1)	
	Mean	9.61	10.1	10.4	9.01	
	Minimum	8.49	9.67	9.55	8.44	
	Maximum	10.4	10.5	11.0	9.47	
	C.V.(%)	6.95	3.50	5.31	4.87	
	B-value	(2)	(2)	(2)	(2)	
F_{12}^{su}	Distribution	Normal	Normal	Normal	Normal	
(ksi)	C ₁	9.61	10.1	10.4	9.01	
x - 7	C ₂	0.668	0.352	0.553	0.439	
	No. Specimens		6	6	6	
	No. Batches Data Class	1 Sereening	1 Sereening	1 Sereening	1 Sereening	
	Mean	Screening 0.77	Screening 0.84	Screening 0.66	Screening 0.62	
	Minimum	0.71	0.78	0.62	0.50	
	Maximum	0.83	0.86	0.72	0.69	
G_{12}^s	C.V.(%)	5.6	3.6	5.3	12	
(Msi)	No. Specimens		6	6	6	
	No. Batches	1	1	1	1	
	Data Class	Screening	Screening	Screening	Screening	
	Mean Minimum					
	Maximum					
	C.V.(%)					
	B-value					
γ_{12}^{su}	Distribution					
(με)	C ₁ C ₂					
	No. Specimens No. Batches Data Class	5				

(1) Reference 4.4.4.

(2) Basis values are presented only for A and B data classes.

MATERIA	,	4/5250-3 unidirection			Table 4.4.4(i)
RESIN CO FIBER VO PLY THIC	0LUME: 59- KNESS: 0.0	32 wt% 63 % 055-0.0058 in.	C/BMI 147-UT AS4/5250-3 Shear, 12-plane [±45] _{4s} 74/W, 350/W, 350/W		
TEST ME	THOD: /I D 3518-76		MODULUS CALCI	JLATION:	Screening
NORMALI		normalized			
Tamananati		74	250	250	
Equilibriun	Content (%) n at T, RH	74 0.55 160°F, 95%	350 0.55 (1)	350 1.1 160°F, 95%	
Source Co		(2)	(2)	(2)	
	Mean Minimum	12.5 11.3	8.70 8.24	9.81 8.13	
	Maximum	13.2	8.95	10.6	
	C.V.(%)	5.26	3.42	9.27	
	B-value	(3)	(3)	(3)	
F_{12}^{su}	Distribution	Normal	Normal	Normal	
(ksi)	C ₁	12.5	8.70	9.81	
	C ₂	0.656	0.298	0.909	
	No. Specimens		5	6	
	No. Batches	1	1	1	
	Data Class	Screening	Screening	Screening	
	Mean Minimum	0.79 0.77	0.46 0.43	0.49 0.40	
	Maximum	0.81	0.43	0.40	
C^{8}	C.V.(%)	1.9	4.0	14	
G_{12}^s	0(/0)				
(Msi)	No. Specimens	s 6	6	4	
	No. Batches	1	1	1	
	Data Class	Screening	Screening	Screening	
	Mean Minimum Maximum C.V.(%)				
γ_{12}^{su}	B-value Distribution				
(με)	C ₁ C ₂				
	No. Specimens No. Batches Data Class	5			

(1) Conditioned at 160°F, 95% relative humidity for 3 days (75% saturation).

(2) Reference 4.4.4.

4.4.5 IM7 6k/5250-4 RTM 4-harness satin weave fabric

These data are presented in the MIL-HDBK-17-2F Annex A.

4.4.6 T650-35 3k/5250-4 8-harness satin weave fabric

These data are presented in the MIL-HDBK-17-2F Annex A.

4.4.7 T650-35 3k/5250-4 plain weave fabric

These data are presented in the MIL-HDBK-17-2F Annex A.

4.5 CARBON - POLYIMIDE COMPOSITES

4.5.1 Celion 3000/F670 8-harness satin weave fabric

Material Description:

Material: Celion 3000/F670

- Form: 8 harness satin fabric, areal weight of 384 g/m², typical cured resin content of 30-34%, typical cured ply thickness of 0.0132-0.0144 inches.
- Processing: Autoclave cure; 440°F for 2 hours; 600°F for 3 hours, 200 psi; postcure to achieve high temperature service.

General Supplier Information:

Fiber: Celion 3000 fibers are continuous carbon filaments made from PAN precursor. Filament count is 3000 filaments/tow. Typical tensile modulus is 34 x 106 psi. Typical tensile strength is 515,000 psi.

Matrix: F670 is a polyimide resin (PMR 15) with good high temperature performance.

Maximum Short Term Service Temperature: 575°F (dry)

Typical applications: Commercial and military aircraft applications where high temperature resistance is a requirement.

4.5.1 Celion 3000/F670 8-harness satin weave fabric*

MATERIAL:	Celion 3000/F670 8-harness satin we	C/PI 384-8HS Celion 3000/F670 Summary						
FORM:	Hexcel F3L584/F670 8-harness satin	weave fabric prepres	9					
FIBER:	Celanese Celion 3000	MATRIX:	Hexcel F670 (PM	IR-15)				
T _g (dry):	635°F T _g (wet):	Tg METHOD:						
PROCESSING:	Autoclave cure: 440°F, 2 hours; 600°l	F, 3 Hours, 200 psig;	Autoclave cure: 440°F, 2 hours; 600°F, 3 Hours, 200 psig; Postcure					

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

Date of fiber manufacture	Date of testing	8/87
Date of resin manufacture	Date of data submittal	4/89
Date of prepreg manufacture 2/87-5/	7 Date of analysis	1/93
Date of composite manufacture		

LAMINA PROPERTY SUMMARY

	75°F/A	550°F/A			
Tension, 1-axis	SS	SS			
Tension, 2-axis	SS	SS			
Tension, 3-axis					
Compression, 1-axis	SS	SS			
Compression, 2-axis	SS	SS			
Compression, 3-axis					
Shear, 12-plane					
Shear, 23-plane					
Shear, 31-plane					
SB Strength, 23-plane	S				
SB Strength, 31-plane	S				

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.8		
Resin Density	(g/cm ³)	1.32		
Composite Density	(g/cm ³)	1.59	1.59 - 1.63	
Fiber Areal Weight	(g/m ²)	384		
Fiber Volume	(%)	56	57 - 64	
Ply Thickness	(in)		0.0132 - 0.0144	

LAMINATE PROPERTY SUMMARY

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

MATERI		on 3000/F670 8-			LIED FOR THIS MATERIAL. Table 4.5.1(a)	
FIBER V	OLUME: 57-6	34 wt% COMP: DENSITY: 1.59-1.63 g/cm ³ 54 % VOID CONTENT: 0.0-0.62% 132-0.0144 in. 1.50 - 0.00000000000000000000000000000000			C/PI 384-8HS Celion 3000/F670 Tension, 1-axis [0 _r] ₈ 75(A	
TEST ME	ETHOD:	ON:	75/A, 550/A Screening			
AST	M D 3039-76					
NORMAL	LIZED BY: Fibe	r volume to 57%	ն (0.0147 in. C	PT)		
	ture (°F) Content (%) ım at T, RH	7: amb			50 bient	
Source C		2			22	
		Normalized	Measured	Normalized	Measured	Normalized Measured
	Mean Minimum Maximum C.V.(%)	132 127 140 2.75	136 131 144 2.76	116 95.4 129 7.94	120 98.7 134 7.95	
F_1^{tu}	B-value Distribution	(1) Normal	(1) Normal	(1) Normal	(1) Normal	
(ksi)	$\begin{array}{c} C_1 \\ C_2 \end{array}$	132 3.63	136 3.76	116 9.18	120 9.52	
	No. Specimens No. Batches Data Class	3 Scree	ening		9 3 ening	
$\mathrm{E}_{1}^{\mathrm{t}}$	Mean Minimum Maximum C.V.(%)	9.03 8.66 9.35 3.22	9.35 8.96 9.68 3.23	8.67 8.50 9.07 2.54	8.98 8.80 9.39 2.55	
(Msi)	No. Specimens No. Batches Data Class	g 3 Scree	3		9 3 ening	
v_{12}^{t}	Mean No. Specimens No. Batches					
	Data Class Mean Minimum Maximum C.V.(%)					
$arepsilon_1^{ ext{tu}}$	B-value Distribution					
(με)	C ₁ C ₂					
	No. Specimens No. Batches Data Class					

MATERI		on 3000/F670 8				Table 4.5.1(b)
FIBER V	OLUME: 57-6	34 wt% COMP: DENSITY: 1.59-1.63 g/cm ³ 64 % VOID CONTENT: 0.0-0.62% 132-0.0144 in. 132-0.0144 in. 132-0.0144 in.			C/PI 384-8HS Celion 3000/F670 Tension, 2-axis [90 _f] ₈	
TEST ME	ETHOD:	DN:	75/A, 550/A Screening			
AST	M D 3039-76					
NORMAL	LIZED BY: Fibe	r volume to 57%	6 (0.0147 in. C	PT)		
	ture (°F) Content (%) ım at T, RH	7 amb		55 amb	50 pient	
Source C		2		2		
		Normalized	Measured	Normalized	Measured	Normalized Measured
	Mean Minimum Maximum C.V.(%)	107 85.6 129 15.7	111 88.6 133 15.7	90.4 61.9 123 23.8	93.5 64.1 127 23.8	
F ₂ ^{tu}	B-value Distribution	(1) ANOVA	(1) ANOVA	(1) ANOVA	(1) ANOVA	
(ksi)	C ₁ C ₂	19.3 6.09	20.0 6.09	24.7 6.02	25.5 6.02	
	No. Specimens No. Batches Data Class	s a Scree	3	Scree	3	
E_2^t	Mean Minimum Maximum C.V.(%)	8.43 7.43 9.33 7.45	8.73 7.69 9.66 7.46	8.23 7.58 8.84 5.49	8.52 7.85 9.15 5.48	
(Msi)	No. Specimens No. Batches Data Class	9 3 Screening		9 3 Screening		
v_{21}^{t}	Mean No. Specimens No. Batches					
	Data Class Mean Minimum Maximum C.V.(%)					
$arepsilon_2^{ ext{tu}}$	B-value Distribution					
(με)	C ₁ C ₂					
	No. Specimens No. Batches Data Class					

MATERIA	,	on 3000/F670 8				Table 4.5.1(c)
FIBER V	OLUME: 57-6	34 wt% COMP: DENSITY: 1.59-1.63 g/cm ³ 54 % VOID CONTENT: 0.0-0.62% 132-0.0144 in. 1.59-1.63 g/cm ³ 1.59-1.63 g/cm ³			C/PI 384-8HS Celion 3000/F670 Compression, 1-axis [0 _f] ₈	
TEST ME	THOD:	DN:	75/A, 550/A Screening			
	MA SRM 1-88					
NORMAL	IZED BY: Fibe	er volume to 57%	6 (0.0147 in. C	PT)		
	ture (°F) Content (%) ım at T, RH	amb			50 pient	
Source C		2			22	
		Normalized	Measured	Normalized	Measured	Normalized Measured
	Mean Minimum Maximum C.V.(%)	99.4 87.9 118 9.33	103 91.3 122 9.33	66.0 59.0 71.7 6.60	68.3 61.1 74.2 6.59	
F ₁ ^{cu}	B-value Distribution	(1) ANOVA	(1) ANOVA	(1) Normal	(1) Normal	
(ksi)	C ₁ C ₂	10.2 5.28	10.6 5.28	66.0 4.36	68.3 4.51	
	No. Specimens No. Batches Data Class	Scree	3 ening	Scre	9 3 ening	
E_1^c	Mean Minimum Maximum C.V.(%)	8.61 8.40 9.09 2.54	8.92 8.69 9.41 2.54	8.09 7.26 8.78 5.19	8.38 7.51 9.09 5.21	
(Msi)	No. Specimens No. Batches Data Class	3	9 3 Screening		9 3 ening	
v_{12}^{c}	Mean No. Specimens No. Batches					
	Data Class Mean Minimum Maximum C.V.(%)					
$\varepsilon_1^{ m cu}$	B-value Distribution					
(με)	C ₁ C ₂					
	No. Specimens No. Batches Data Class					

MIL-HDBK-17-2F

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERIA	1	Celion 3000/F670 8			Table 4.5.1(d)	
RESIN C FIBER VO PLY THIO	OLUME: 5	80-34 wt% 57-64 % 0.0132-0.0144 in.	4 % VOID CONTENT: 0.0-0.62%			C/PI 384-8HS Celion 3000/F670 Compression, 2-axis [90 _f] ₈ 75/A, 550/A
TEST ME	ETHOD:		MODULU	S CALCUL	ATION:	Screening
SAC	MA SRM 1-88					
NORMAL	LIZED BY: F	Fiber volume to 57%	% (0.0147 in. C	PT)		
	ture (°F) Content (%) ım at T, RH		5 bient		550 ambient	
Source C			2		22	
		Normalized	Measured	Normaliz		Normalized Measured
	Mean Minimum Maximum C.V.(%)	78.9 76.1 80.7 3.10	81.7 78.8 83.5 3.10	54.2 52.4 56.6 4.02	56.1 54.2 58.6 4.03	
F2 ^{cu} (ksi)	B-value Distribution C ₁ C ₂	(1)				
	No. Specime No. Batches Data Class		3 1 ening		3 1 Screening	
E_2^c	Mean Minimum Maximum C.V.(%)	8.08 8.03 8.14 0.681	8.37 8.31 8.43 0.720	7.67 7.59 7.77 1.19	7.94 7.86 8.04 1.15	
(Msi)	No. Specimer No. Batches Data Class		3 1 ening		3 1 Screening	
v_{12}^{c}	Mean No. Specimer No. Batches					
	Data Class Mean Minimum Maximum C.V.(%)					
$\varepsilon_2^{\rm cu}$	B-value Distribution					
(με)	C ₁ C ₂					
	No. Specime No. Batches Data Class	ns				

(1) Insufficient observations to complete the statistical evaluations.

MATERIA				ness satin weave fal	Table 4.5.1(e)	
RESIN CC FIBER VO PLY THICI	LUME:	30-34 wt 57-64 % 0.0132-0		COMP: DENSITY: VOID CONTENT:	1.59-1.63 g/cm 0.0-0.62%	C/PI 384-8HS Celion 3000/F670 SBS, 23-plane [0 _f] ₈ 75/A
TEST MET ASTM	THOD: 1 D 2344-84	Screening				
NORMALI	ZED BY:	Not norm	nalized			
Temperatu Moisture C Equilibrium	Content (%)		75 ambient			
Source Co			22			
	Mean Minimum Maximum C.V.(%)	1	11.1 10.4 11.7 5.88			
F ₂₃ ^{sbs} (ksi)	B-value Distributic C ₁ C ₂	on	(1)			
	No. Speci No. Batch Data Clas	ies	3 1 Screening			

(1) Insufficient observations to complete the statistical evaluations.

MATERIAL				ess satin weave fal	Table 4.5.1(f)	
RESIN CO FIBER VOI PLY THICH	LUME:	30-34 wt ⁴ 57-64 % 0.0132-0		COMP: DENSITY: VOID CONTENT:	1.59-1.63 g/cm 0.0-0.62%	C/PI 384-8HS Celion 3000/F670 SBS, 31-plane [0 _f] ₈ 75/A
TEST MET ASTM	THOD: 1 D 2344-84	Screening				
NORMALIZ			olizod			
		Not norm				1
Temperatu Moisture C Equilibrium	content (%)		75 ambient			
Source Co	de		22			
	Mean Minimum Maximum C.V.(%)	I	10.9 9.70 12.0 6.15			
F ^{sbs} (ksi)	B-value Distributic C ₁ C ₂	on	(1) ANOVA 0.722 4.78			
	No. Spec No. Batch Data Clas	nes	9 3 Screening			

(1) Short beam strength test data are approved for Screening Data Class only.

4.6 CARBON - PHENOLIC COMPOSITES

4.7 CARBON - SILICONE COMPOSITES

4.8 CARBON - POLYBENZIMIDAZOLE COMPOSITES

4.9 CARBON - PEEK COMPOSITES

4.9.1 IM6 12k/APC-2 unidirectional tape

Material Description:

Material: IM6 12k/APC-2

Form: Unidirectional tape, fiber areal weight of 150 g/m², typical cured resin content of 32%, typical cured ply thickness of 0.0053 inches.

Processing: Autoclave cure; 720°F, 30-45 mins., 60 psi.

General Supplier Information:

- Fiber: IM6 fibers are continuous, intermediate modulus carbon filaments made from PAN precursor, surface treated to improve handling characteristics and structural properties. Filament count is 12,000 filaments per tow. Typical tensile modulus is 40 x 10⁶ psi. Typical tensile strength is 635,000 psi.
- Matrix: APC-2 is a semi-crystalline thermoplastic (polyetheretherketone, PEEK) resin that has high toughness and damage tolerance. It can be stored indefinitely at ambient conditions.

Maximum Short Term Service Temperature: 250°F (dry), 250°F (wet)

Typical applications: Primary and secondary structural applications on commercial and military aircraft, space components.

Data Analysis Summary:

1. Data are from publicly available report, Reference 4.9.1.

4.9.1 IM6 12k/APC-2 unidirectional tape*

MATERIAL:	IM6 12k/A	IM6 12k/APC-2 unidirectional tape							
FORM:	Fiberite IN	iberite IM6/APC-2 unidirectional tape prepreg							
FIBER:	Hercules	IM6 12k		MATRIX:	Fiberite APC-2				
T _g (dry):	291°F	T _g (wet):	309°F	Tg METHOD:	DMA				
PROCESSING:	Autoclave	Autoclave cure: 720°F, 30 - 45 minutes, 60 psig							

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

Date of fiber manufacture	Date of testing	
Date of resin manufacture	Date of data submittal	12/88
Date of prepreg manufacture	Date of analysis	1/93
Date of composite manufacture		

	74°F/A	-67°F/A	180°F/A	250°F/A	180°F/O	74°F/W	180°F/W
Tension, 1-axis	SSSS	SSSS	SSSS	SSSS	SSSS	SSSS	SSSS
Tension, 2-axis	SS-S	SS-S	SS-S	SS-S			
Tension, 3-axis							
Compression, 1-axis	SS-S	SS-S	SS-S	SS-S	SS-S	SS-S	SS-S
Compression, 2-axis							
Compression, 3-axis							
Shear, 12-plane	SS	SS	SS	SS	SS	SS	SS
Shear, 23-plane							
Shear, 31-plane							

LAMINA PROPERTY SUMMARY

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.73		
Resin Density	(g/cm ³)	1.28		
Composite Density	(g/cm ³)	1.55	1.54 - 1.58	ASTM D 792
Fiber Areal Weight	(g/m ²)			
Fiber Volume	(%)	60	60 - 62	
Ply Thickness	(in)	0.0054	0.0052 - 0.0058	

LAMINATE PROPERTY SUMMARY

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

MATERIA	AL: IM6	12k/APC-2 unid				Table	4.9.1(a)		
FIBER V				COMP: DENSITY:1.55 g/cm3VOID CONTENT:0.0-0.2%			C/PEEK - UT IM6/APC-2 Tension, 1-axis [0] ₈ 74/A, -67/A, 180/A		
TEST ME	THOD:		MODULUS	S CALCULATIO	N:		ening		
AST	M D 3039-76								
NORMALIZED BY: Specimen thickness and batch fiber volume to 60% (0.0055 in. CPT)									
	Content (%)	74 amb	-	-6 amb		18 amb	-		
Equilibriu Source C	im at T, RH	(1)	(1)	(1)		
	Joue	Normalized	Measured	Normalized	Measured	Normalized	Measured		
	Mean Minimum	350 266	370 282	376 326	398 345	327 234	344 248		
	Maximum C.V.(%)	426 15.9	455 16.0	412 8.69	439 8.93	402 17.3	421 16.8		
F ₁ ^{tu}	B-value Distribution	(2) Normal	(2) Normal	(2) Normal	(2) Normal	(2) Normal	(2) Normal		
(ksi)	C ₁ C ₂	350 55.5	370 59.3	376 32.7	398 35.6	327 56.4	344 58.0		
	No. Specimens No. Batches	6		6		6 1			
	Data Class Mean	Screening 21.6 22.9		Screening 22.0 23.3		Screening 23.2 24.4			
E_1^t	Minimum Maximum C.V.(%)	21.3 22.0 1.41	22.4 23.3 1.58	20.9 23.2 3.35	22.2 24.5 3.26	22.3 23.7 2.24	23.6 25.0 2.17		
(Msi)	No. Specimens	6		6		6			
	No. Batches Data Class	1 Screening		1 Scree		1 Screening			
v_{12}^{t}	Mean No. Specimens No. Batches	6 1		0.357 6 1		6 1			
	Data Class	Scree		Scree		Scree			
	Mean Minimum Maximum C.V.(%)		13600 8100 17500 24.6	15900 13500 17200 9.23		14100 10400 16800 14.9			
$arepsilon_1^{ ext{tu}}$	B-value Distribution		(2) Normal		(2) Normal		(2) Normal		
(με)	C ₁ C ₂	C1		15900 1470		14100 2100			
	No. Specimens No. Batches	6		6		6			
	Data Class	Scree	ening	Scree	ening	Screening			

(1) Reference 4.9.1.

MATERIA	AL:	IM6	12k/APC-2 unid	Table 4.9.1(b) C/PEEK - UT						
RESIN CO FIBER VO PLY THIO		61-6	32 wt% COMP: DENSITY: 1.55 g/cm ³ 61-62 % VOID CONTENT: 0.0-0.2% 0.0053-0.0054 in. VOID CONTENT: 0.0-0.2%		IM6/APC-2 Tension, 1-axis [0]₃					
TEST ME				MODULUS	S CALCUL	ATION:	250/A, 74/0.13%, 180/0.11% Screening			
AST	M D 3039-76									
NORMAL	NORMALIZED BY: Specimen thickness and batch fiber volume to 60% (0.0055 in. CPT)									
Temperat			25			180	7			
	Content (%) m at T, RH		amb	lient		0.11 (1)	0.2 160°F			
Source C			(2	/		(2)	(2	2)		
			Normalized	Measured	Normaliz		Normalized	Measured		
	Mean Minimum		304 253	322 269	369 303	390 320	352 271	371 286		
	Maximum		341	363	403	425	415	434		
	C.V.(%)		11.4	11.4	12.3	12.2	14.6	14.2		
	B-value		(3)	(3)	(3)	(3)	(3)	(3)		
F_1^{tu}	Distribution		Normal	Normal	Norma		Normal	Normal		
(ksi)	C ₁		304	322	369	390	352	371		
	C ₂		34.7	36.6	45.3	47.6	51.4	52.6		
	No. Specim	ens	6	3		5	6	5		
	No. Batches	6	1 Screening			1	1			
	Data Class Mean		Screening 21.4 22.7		Screening 21.8 23.0		Screening 21.2 22.3			
	Minimum		20.5	21.9	20.9	22.1	20.4	21.6		
	Maximum		22.1	23.4	22.2	23.5	22.0	23.0		
E_1^t	C.V.(%)		2.70	2.42	2.42	2.42	3.15	3.04		
(Msi)	No. Specim	ens	F	3		5	6			
(10101)	No. Batches		6 1		1		1			
	Data Class		Scree		Screening		Scree			
	Mean			0.338		0.366		0.372		
1,t	No. Specim No. Batches		6			5 1	6			
v_{12}^{t}	Data Class		Scree	enina	Screening		Scree	ening		
	Mean		00100	14800		16300		18100		
	Minimum			12500		14400		15700		
	Maximum			16400		17200		20800		
	C.V.(%)			11.8		6.70		10.8		
	B-value		(3)		(3)			(3)		
$arepsilon_1^{ ext{tu}}$	Distribution		Normal		Normal			Normal		
(με)	C ₁			14800		16300		18100		
	C ₂			1760		1090	1960			
	No. Specim	ens	6	5		5	6	6		
	No. Batches		1		1		1			
(1) Cond	Data Class		Scree 6% relative hum			Screening	Screening			

(1) Conditioned at 160°F, 96% relative humidity for 3 days (75% saturation).

(2) Reference 4.9.1.

MATERI	AL: IM6	12k/APC-2 unidi			Table 4.	9.1(c)		
FIBER V			COMP: DENSITY: 1.55 g/cm ³ VOID CONTENT: 0.0-0.2%			C/PEEK - UT IM6/APC-2 Tension, 1-axis [0]₀ 180/0.14%		
	ETHOD: M D 3039-76		MODULU	S CALCUL	ATIO	N:	Scree	
		oimon thiolracon	and batch fibe		- CO0	((0.0055 in (
		cimen thickness	10 007	% (0.0055 III. V				
	Content (%) Im at T, RH	180 0.1 160°F, (1)	4 95%					
		Normalized	Measured	Normali	zed	Measured	Normalized	Measured
	Mean Minimum Maximum C.V.(%)	364 325 411 10.2	385 344 436 10.1					
F ₁ ^{tu}	B-value Distribution	(2) Normal	(2) Normal					
(ksi)	C ₁ C ₂	364 37.2	385 38.8					
	No. Specimens No. Batches Data Class	6 1 Screening						
E_1^t	Mean Minimum Maximum C.V.(%)	21.2 20.5 22.2 3.14	22.4 21.8 23.2 2.77					
(Msi)	No. Specimens No. Batches Data Class	6 1 Screet	aina					
v_{12}^{t}	Mean No. Specimens No. Batches Data Class	6 1 Screet	0.332					
	Mean Minimum Maximum C.V.(%)		15400 13600 17200 9.24					
$arepsilon_1^{ ext{tu}}$	B-value Distribution		(2) Normal					
(με)	C ₁ C ₂		15400 1420					
	No. Specimens No. Batches Data Class	6 1 Scree	ning					

(1) Reference 4.9.1.

MATER	IAL: IM6	L: IM6 12k/APC-2 unidirectional tape									
FIBER	CONTENT: 31-3 VOLUME: 60-6 IICKNESS: 0.00	5 g/cm ³ %	C/PEEK-UT IM6/APC-2 Tension, 2-axis [90] ₁₆ 74/A, -67/A, 180/A, 250/A								
TEST N	METHOD:		MODULU	S CALCULATI	ON:	Screening					
AS	STM D 3039-76										
NORM	ALIZED BY: Not	normalized									
	rature (°F)	74	-67	180	250						
	re Content (%) rium at T, RH	ambient	ambient	ambient	ambient						
Source	Code	(1)	(1)	(1)	(1)						
	Mean Minimum	9.41 8.53	9.67 8.72	11.1 10.0	9.07 7.30						
	Maximum	10.6	10.7	10.0	9.72						
	C.V.(%)	9.35	6.52	8.87	10.1						
	B-value	(2)	(2)	(2)	(2)						
F_2^{tu}	Distribution	Normal	Normal	Normal	Normal						
(ksi)	C ₁	9.41	9.67	11.1	9.07						
. ,	C ₂	0.880	0.631	0.985	0.916						
	No. Specimens	6	6	6	6						
	No. Batches	1 Sereening	1 Sereening	1 Sereening	1 Sereening						
	Data Class Mean	Screening 1.28	Screening 1.41	Screening 1.22	Screening 1.32						
	Minimum	1.24	1.35	1.17	1.27						
	Maximum	1.36	1.46	1.25	1.38						
E_2^t	C.V.(%)	3.33	3.32	2.13	3.44						
(Msi)	No. Specimens	6	6	6	6						
	No. Batches	1	1	1	1						
	Data Class Mean	Screening	Screening	Screening	Screening						
v_{21}^{t}	No. Specimens No. Batches										
• 21	Data Class										
	Mean	7610	7120	10900	12300						
	Minimum	6650	6450	8850	8510						
	Maximum C.V.(%)	8830 11.2	8180 8.15	14900 20.0	23600 45.5						
	B-value	(2)	(2)	(2)	(2)						
$arepsilon_2^{ ext{tu}}$	Distribution	Normal	Normal	Normal	Nonpara.						
(με)	C ₁	7610	7120	10900	5						
	C ₂	850	581	2180	3.06						
	No. Specimens	6	6	6	6						
	No. Batches	1 Screening	1 Screening	1 Screening	1 Screening						
	Data Class	Screening	Screening	Screening	Screening						

(1) Reference 4.9.1.

MATERIA		12k/APC-2 unio			VAS NUT SUPP	Table	4.9.1(e)
FIBER V	ESIN CONTENT: 32 wt% COMP: DENSITY: 1.55 g/cm ³ IBER VOLUME: 60-62 % VOID CONTENT: 0.0% LY THICKNESS: 0.0054-0.0058 in. VOID CONTENT: 0.0%			IM6// Compress [(C/PEEK - UT IM6/APC-2 Compression, 1-axis [0] ₁₆ 74/A, -67/A, 180/A		
TEST ME	ETHOD:		MODULUS	S CALCULATI	ON:		ening
AST	M D 3410A-87						
NORMAL	IZED BY: Spec	cimen thickness	s and batch fibe	er volume to 60	0% (0.0055 in. C	PT)	
Tempera Moisture	ture (°F) Content (%)		74 Dient		·67 Ibient	18 amb	
Equilibriu	im at T, RH						
Source C	Code		1) Maggurad		(1)	(*	/
	Moon	Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean Minimum	167 139	169 144	156 115	160 118	156 103	155 96.7
	Maximum	139	200	179	181	103	96.7 190
	C.V.(%)	13.3	13.3	16.0	15.6	20.2	20.4
au	B-value	(2)	(2)	(2)	(2)	(2)	(2)
F ₁ ^{cu}	Distribution	Normal	Normal	Normal	Normal	Normal	Normal
(ksi)	C ₁ C ₂	167 22.1	169 22.4	156 25.0	160 24.9	156 31.5	155 31.6
	No. Specimens No. Batches	6 1			6 1	e	
	Data Class	Screening		Screening		Screening	
	Mean Minimum	19.4 17.6	19.7 18.1	20.4 16.9	20.9 17.3	21.4 17.0	21.2 16.0
	Maximum	20.9	21.2	24.0	24.8	27.5	26.7
E_1^c	C.V.(%)	6.54	7.17	12.2	12.6	16.1	16.1
(Msi)	No. Specimens	6		6		6	
	No. Batches Data Class	1 Screening		Scre	1 eening	1 Screening	
v_{12}^{c}	Mean No. Specimens No. Batches						
	Data Class						
	Mean		8790		7910		8010
	Minimum Maximum		7780		4510		5950 0350
	C.V.(%)		10500 11.8		9630 24.7		9350 14.9
	0 (70)		11.0		27.1		17.0
	B-value		(2)	(2)			(2)
$\varepsilon_1^{ m cu}$	Distribution		Normal	Normal			Normal
(με)	C ₁		8790		7910		8010
(1-2)	(pro)		1040		1950		1200
	No. Specimens		6	6		6	
	No. Batches		1		1	, ,	
	Data Class	Scre	ening	Scre	eening	Scree	ening

(1) Reference 4.9.1.

MATERIAL:IM6 12k/APC-2 unidirectional tapeRESIN CONTENT:32 wt%COMP: DENSITY:1.55 g/cm3FIBER VOLUME:60-62 %VOID CONTENT:0.0%PLY THICKNESS:0.0054-0.0058 in.VOID CONTENT:0.0%						Table 4.9.1(f) C/PEEK - UT IM6/APC-2 Compression, 1-axis [0] ₁₆ 250/A, 74/0.12%, 180/0.097%		
TEST ME			MODULUS	S CALCULAT	TION:	2007, 1	Screeni	
ASTM D 3410A-87								
		cimen thickness	s and batch fibe	er volume to 6	60% (0.0055 ii	n. CPT)		
Tempera Moisture	ture (°F) Content (%)		50 pient		180 0.097		74 0.1	
Equilibriu	im at T, RH				(1)		160°F,	95%
Source C	code	(2 Normalized	2) Measured	Normalized	(2) d Measure	d Norm	(2) nalized) Measured
	Mean	129	126	162	160		74	176
	Minimum	70.0	71.5	156	146		41	144
	Maximum	154	145	168	169		86	192
	C.V.(%)	23.6	21.8	3.25	5.36	ç	9.6	9.7
	B-value	(3)	(3)	(3)	(3)	(3)	(3)
F ₁ ^{cu}	Distribution	Normal	Nonpara.	Normal	Normal		rmal	Normal
(ksi)	C ₁	129	5	162	160		74	176
	C ₂	30.5	3.06	5.26	8.59	1	6.7	17.1
	No. Specimens	e	6		5		6	
	No. Batches	1 Screening		0.		1		
	Data Class Mean	21.2	ening 20.7	19.5	reening 19.3	2	Scree 1.4	21.6
	Minimum	19.6	19.0	18.7	18.6		8.8	19.3
	Maximum	24.7	23.2	20.0	20.7		3.9	23.9
E_1^c	C.V.(%)	8.47	7.37	2.91	4.42	8	.60	7.38
(Msi)	No. Specimens	6	6		5 1		6	
	No. Batches	1 Screening		5.		1 Screening		
	Data Class Mean	Scree	ennig	50	reening		Scree	anng
v_{12}^{c}	No. Specimens No. Batches							
r 12	Data Class							
	Mean		6860		8310			8690
	Minimum		3380		7500			6950
	Maximum		8990		9390			12100
	C.V.(%)		28.7		8.94			23.5
	B-value		(3)		(3)			(3)
$\varepsilon_1^{ m cu}$	Distribution		Normal		Normal			Normal
(με)	C ₁		6860		8310			8690
	C ₂		1970		743			2050
	No. Specimens	f	6			6		
	No. Batches		1	5 1		1		
(1) Cond	Data Class ditioned at 160°F, 9	Scree			reening		Scree	ening

(1) Conditioned at 160°F, 95% relative humidity for 10 days (75% saturation).

(2) Reference 4.9.1.

MATERIA		Table 4.9.1(g)					
FIBER V				COMP: DENSITY: 1.55 g/cm ³ VOID CONTENT: 0.0%		C/PEEK - UT IM6/APC-2 Compression, 1-axis [0] ₁₆ 180/W	
	ETHOD: M D 3410A-87		MODULUS	S CALCUL		N:	Screening
		cimen thickness	and batch fibe		to 60%	(0.0055 in .C	DT)
					10 00%	6 (0.0055 m. Ci	F 1)
	Content (%) im at T, RH	18(0.1 160°F, (1)	1 95%				
		Normalized	Measured	Normali	zed	Measured	Normalized Measured
	Mean Minimum Maximum C.V.(%)	154 105 189 18.2	151 98.5 183 19.3				
F ₁ ^{cu}	B-value Distribution	(2) Normal	(2) Normal				
(ksi)	C ₁ C ₂	154 28.0	151 29.3				
	No. Specimens No. Batches Data Class	6 1 Screening					
E ₁ ^c	Mean Minimum Maximum C.V.(%)	20.3 15.6 25.3 18.4	19.8 15.7 24.6 17.6				
(Msi)	No. Specimens No. Batches Data Class	6 1 Scree	ning				
v_{12}^{c}	Mean No. Specimens No. Batches Data Class						
	Mean Minimum Maximum C.V.(%)		8180 6580 9500 13.0				
$arepsilon_1^{ m cu}$	B-value Distribution		(2) Normal				
(με)	C ₁ C ₂		8180 1070				
	No. Specimens No. Batches Data Class	6 1 Scree					

(1) Reference 4.9.1.

Т

• DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERIA	L: IM6 12	IM6 12k/APC-2 unidirectional tape Table 4.9.1(h) C/PEEK - UT					
RESIN CO FIBER VO PLY THIC	DLUME: 61 %		COMP: DENSITY: VOID CONTENT:	1.55 g/cm ³ 0.0-0.2%	IM Shea	16/APC-2 ar, 12-plane [±45]₄s -67/A, 180/A, 250/A	
TEST ME	THOD: // D 3518-76		MODULUS CALC	ULATION:	S	250/A creening	
NORMALI		rmalized					
Temperate Moisture (ure (°F) Content (%)	74 ambient	-67 ambient	180 ambient	250 ambient		
Equilibriur	n at T, RH						
Source Co		(1)	(1)	(1)	(1)		
	Mean Minimum	23.9 18.9	25.4 18.1	22.4 17.2	19.8 14.2		
	Maximum	27.8	29.0	25.3	23.1		
	C.V.(%)	14.8	14.8	15.6	15.1		
	B-value	(2)	(2)	(2)	(2)		
F_{12}^{su}	Distribution	Normal	Normal	Normal	Normal		
(ksi)	C ₁	23.9	25.4	22.4	19.8		
()	C ₂	3.53	3.77	3.49	2.98		
	No. Specimens	6	6	6	6		
	No. Batches	1	1	1	1		
	Data Class	Screening	Screening	Screening	Screening		
	Mean	0.78 0.73	0.91 0.83	0.78 0.72	0.71 0.63		
	Minimum Maximum	0.73	0.83	0.72	0.83		
G_{12}^s	C.V.(%)	5.5	5.5	6.2	9.3		
(Msi)	No. Specimens	6	6	6	6		
、	No. Batches	1	1	1	1		
	Data Class	Screening	Screening	Screening	Screening		
	Mean Minimum						
	Maximum						
	C.V.(%)						
	B-value						
$\gamma_{12}^{\rm su}$	Distribution						
(με)	C ₁						
	C ₂						
	No. Specimens						
	No. Batches Data Class						
	Dala Cidoo						

(1) Reference 4.9.1.

MATERIA		Table 4.9.1(i) C/PEEK - UT			
RESIN CO FIBER VO PLY THIC	LUME: 61	32 wt% % 052-0.0056 in.	COMP: DENSITY: VOID CONTENT:	1.55 g/cm ³ 0.0-0.2%	IM6/APC-2 Shear, 12-plane [±45]₄s 74/0.21%, 180/0.17%, 180/0.20%
TEST ME	THOD:		MODULUS CALC	ULATION:	Screening
ASTN	/I D 3518-76				
NORMALI	ZED BY: Not	normalized			
Temperate		180	74	180	
	Content (%)	0.17	0.21	0.20	
	n at T, RH	(1)	160°F, 95%	160°F, 95%	
Source Co		(2)	(2)	(2)	
	Mean	23.3	23.0	20.0	
	Minimum	21.8	16.2	14.5	
	Maximum	24.0	26.7	26.1	
	C.V.(%)	3.85	15.4	22.4	
	B-value	(3)	(3)	(3)	
F ^{su} ₁₂	Distribution	Normal	Normal	Normal	
(ksi)	C ₁	23.3	23.0	20.0	
()	C ₂	0.897	3.55	4.48	
	No. Specimens	s 5	6	6	
	No. Batches	1	1	1	
	Data Class	Screening	Screening	Screening	
	Mean	0.76	0.79	0.71	
	Minimum	0.74	0.65	0.64	
	Maximum	0.78	0.89	0.78	
G_{12}^s	C.V.(%)	2.7	10	9.0	
(Msi)	No. Specimens	s 4	6	6	
(11101)	No. Batches	1	1	1	
	Data Class	Screening	Screening	Screening	
	Mean Minimum Maximum C.V.(%)				
, su	B-value Distribution				
γ ^{su} (με)	C_1 C_2				
	No. Specimens No. Batches Data Class	3 95% relative humidity			

(1) Conditioned at 160°F, 95% relative humidity for 27 days (75% saturation).

(2) Reference 4.9.1.

4.10 CARBON – CYANATE ESTER COMPOSITES

4.10.1 M55J 6k/954-3 unidirectional tape

Material Description:

Material: M55J 6k/954

Form: Unidirectional tape, nominal fiber areal weight of 72.9 g/m², nominal cured resin content of 27%, typical cured ply thickness of 0.0024 inches.

Processing: Autoclave cure; 350°F, 100 psi for two hours

General Supplier Information:

Fiber: M55J 6k fibers are continuous untwisted carbon filaments made from PAN precursor. Filament count is 6,000 filaments per tow. Typical tensile modulus is 78 x 10⁶ psi. Typical tensile strength is 583,000 psi.

Matrix: 954 is a 350°F curing cyanate ester resin.

Maximum Short Term Service Temperature: 350°F (dry), 250°F (wet)

Typical applications: Dimensionally stable structure for optical instruments

4.10.1 M55J 6k/954-3 unidirectional tape

MATERIAL:	M55J 6k/95	54-3 unidirect	ional tape			C/CE 73-UT M55J/954-3 Summary
FORM:	M55J 6k/95	54-3 unidirect	ional tape prepre	eg		
FIBER:	Toray M55. no twist	J 6k, surface	treated Type 5,	MATRIX:	Hexcel 954-3	
T _g (dry):	390°F	T _g (wet):	340°F	T _g METHOD:	TMA flexure @ rai	mp rate 70°F/min
PROCESSING:	Autoclave of	cure: 350°F,	2 hrs., 100 psi			

Date of fiber manufacture	1/96 - 2/97	Date of testing	1/96 - 7/97
Date of resin manufacture	1/96 - 7/97	Date of data submittal	10/1/97
Date of prepreg manufacture	1/96 - 7/97	Date of analysis	9/98
Date of composite manufacture	1/96 - 7/97		

LAMINA PROPERTY SUMMARY

72°F/A							
aM							
aM							
S							
	aM						

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.91	1.91	
Resin Density	(g/cm ³)	1.19	1.19	ASTM D 792-86
Composite Density	(g/cm ³)	1.65	1.62 - 1.66	ASTM D 792-86
Fiber Areal Weight	(g/m ²)	72.9	71.2 - 75.1	ASTM D 3529-90
Fiber Volume	(%)	64	53 - 67	
Ply Thickness	(in)	0.0024	0.0023-0.0026	

LAMINATE PROPERTY SUMMARY

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

MATERIA	AL: M55J	6k/954-3 unidire	ectional tape					l.10.1(a) 73-UT
RESIN CO FIBER VO PLY THIO	OLUME: 53.1 -	ME: 53.1 - 65.4 % VOID CONTENT: 0.30 - 0.49%						73-01 /954-3 n, 1-axis l] ₁₆ 2/A
TEST ME	THOD:		MODULUS	S CALCU	LATIO	N:	A55,	Mean
AST	M D 3039-95		Chord	between	1000 a	and 3000 με		
NORMAL	IZED BY: Speci	men thickness a		areal weig	ght to 6	60% (0.0024 ir	n. CPT)	
Equilibriu	Content (%) m at T, RH	7 Amb	pient					
Source C	ode	7 Normalized	Z Measured	Norma	lized	Measured	Normalized	Measured
	Mean Minimum Maximum C.V.(%)	324 274 367 5.37	320 277 387 7.52	Norma	1260	Measured	Normalized	wedsured
F ₁ ^{tu}	A-value/B-value Distribution	250/286 ANOVA	216/260 ANOVA					
(ksi)	C ₁ C ₂	17.8 2.15	25.0 2.41					
	No. Specimens No. Batches Data Class	10 6 As	3					
$\mathrm{E}_{1}^{\mathrm{t}}$	Mean Minimum Maximum C.V.(%)	47.7 43.6 52.0 3.66	47.0 43.1 52.1 4.21					
(Msi)	No. Specimens	10	19					
(100)	No. Batches Data Class	e Me	3					
v_{12}^t	Mean No. Specimens No. Batches							
	Data Class Mean Minimum							
	Maximum C.V.(%)							
$arepsilon_1^{ ext{tu}}$	B-value Distribution							
(με)	C ₁ C ₂							
	No. Specimens No. Batches Data Class							

MATERIA	AL: M55J	6k/954-3 unidire	ectional tape					4.10.1(b)
FIBER V	OLUME: 54.9 -	27.4 wt%COMP: DENSITY:1.63 - 1.67 g/cm³66.1 %VOID CONTENT:0.17 - 0.27%3 - 0.0024 in.0.0024 in.					C/CE 73-UT M55J/954-3 Compression, 1-axis [0] ₃₂ 72/A	
TEST ME			MODULUS	S CALCU	LATIO	N:	A55,	Mean
SAC	MA SRM1-94 (1)		Chord	between	1000 a	and 3000 με		
NORMAL	IZED BY: Specir	nen thickness a	nd batch fiber	areal wei	ght to 6	60% (0.0024 in	. CPT)	
Equilibriu	Content (%) m at T, RH	72 Amb	ient					
Source C	ode	Normalized	Measured	Norma	lized	Measured	Normalized	Measured
	Mean Minimum Maximum C.V.(%)	136 109 163 7.22	138 111 163 6.73	Norma		Measured	Normalized	Measured
F ₁ ^{cu}	A-value/B-value Distribution	96/109 ANOVA	103/118 ANOVA					
(ksi)	C ₁ C ₂	10.4 2.62	9.50 2.14					
	No. Specimens No. Batches Data Class	10 6 A5	i					
E ₁ ^c	Mean Minimum Maximum C.V.(%)	44.8 39.8 49.3 4.70	45.6 42.3 50.0 3.78					
(Msi)	No. Specimens No. Batches Data Class	10 6 Me	i					
V ^c ₁₂	Mean No. Specimens No. Batches							
	Data Class Mean							
	Minimum Maximum C.V.(%)							
$\varepsilon_1^{\rm cu}$	B-value Distribution							
(με)	C ₁ C ₂							
	No. Specimens No. Batches Data Class							

(1) Torque on fixture bolts was "finger tight", not specifically torqued to 5-10 in-lbs.

MATERIAL: M	155J 6k/954-3 unidirecti	onal tape			e 4.10.1(c) CE 73-UT
FIBER VOLUME: 57	BER VOLUME: 57.3 - 66.7 % VOID CONTENT: 0.17 - 0.27%				5J/954-3 , 31 plane [0] ₃₂ 72/A
TEST METHOD: ASTM D 2344-95		MODULUS CALCUI	_ATION:	Sc	reening
	ot normalized				
Temperature (°F) Moisture Content (%) Equilibrium at T, RH	72 Ambient				
Source Code	72				
Mean Minimum Maximum C.V.(%)	11.1 9.90 12.2 5.31				
$\begin{array}{c} \mbox{A-value/B-val}\\ F_{13}^{sbs} & \mbox{Distribution} \end{array}$	lue (1) ANOVA				
(ksi) C ₁ C ₂	0.623 2.68				
No. Specimer No. Batches Data Class	ns 113 6 Screening				

(1) Short beam strength test data are approved for Screening Data Class only.

REFERENCES

- 4.2.27 Askins, Robert, "Characterization of EA9396 Epoxy Resin for Composite Repair Applications," University of Dayton Research Center, UDR-TR-91-77, WL-TR-92-4060, October 1991.
- 4.4.4 Rondeau, R.A., Askins, D. R., and Sjoblom, P., "Development of Engineering Data on New Aerospace Materials," University of Dayton Research Institute, UDR-TR-88-88, AFWAL-TR-88-4217, December 1988, Distribution authorized to DoD and DoD contractors only; critical technology; September 1988. Other requests for this document should be referred to AFWAL/MLSE, OH 45433-6533.
- 4.9.1 Rondeau, R.A., Askins, D. R., and Sjoblom, P., "Development of Engineering Data on New Aerospace Materials," University of Dayton Research Institute, UDR-TR-88-88, AFWAL-TR-88-4217, December 1988, Distribution authorized to DoD and DoD contractors only; critical technology; September 1988. Other requests for this document should be referred to AFWAL/MLSE, OH 45433-6533.

CHAPTER 5 ARAMID FIBER COMPOSITES

- 5.1 INTRODUCTION
- 5.2 ARAMID EPOXY COMPOSITES
- 5.3 ARAMID POLYESTER COMPOSITES
- 5.4 ARAMID BISMALEIMIDE COMPOSITES
- 5.5 ARAMID POLYIMIDE COMPOSITES
- 5.6 ARAMID PHENOLIC COMPOSITES
- 5.7 ARAMID SILICON COMPOSITES
- 5.8 ARAMID POLYBENZIMIDAZOLE COMPOSITES
- 5.9 ARAMID PEEK COMPOSITES

Volume 2, Chapter 5 Aramid Fiber Composites

This page intentionally left blank

Volume 2, Chapter 6 Glass Fiber Composites

CHAPTER 6 GLASS FIBER COMPOSITES

6.1 INTRODUCTION

6.2 GLASS\EPOXY COMPOSITES

6.2.1 S2-449 43k/SP381 unidirectional tape

Material Description:

Material: S2-449 17k/PR381

- Form: Unidirectional tape, fiber areal weight of 111 g/m², typical cured resin content of 28-33%, typical cured ply thickness of 0.0033 0.0037 inches.
- Processing: Autoclave cure; 260° F, 50 psi for two hours

General Supplier Information:

- Fiber: S2 glass has enhanced properties in strength, modulus, impact resistance and fatigue when compared to conventional E glass roving. The sizing for these fibers is an epoxy compatible 449 finish. Roving of 17,000 filaments. Typical tensile modulus is 12.5 to 13.0 Msi. Typical tensile strength is 665,000 psi.
- Matrix: PR381 is a 250°F curing epoxy resin providing properties similar to conventional 350°F curing systems. Light tack for up to 30 days at 75°F.

Maximum Short Term Service Temperature: 220°F (dry), 160°F (wet)

Typical applications: Primary and secondary structural applications where improved fatigue and excellent mechanical strength is important such as helicopters and general aviation.

6.2.1 S2-449 43k/SP381 unidirectional tape

MATERIAL:	S2-449 43.5k/SP 381 unidirectional tape			SGI/Ep 284-UT S2-449/SP 381 Summary
FORM:	3M Scotchply SP 381 Uni S29 284 BW 33R	C Prepreg		
FIBER:	Owens Corning S2-449, no twist, no sur- face treatment, typical 449 glass sizing	MATRIX:	3M PR 381	
T _g (dry):	280°F T _g (wet): 234°F	T _g METHOD:	SRM 18-94, RI	DA, G' onset
PROCESSING:	Autoclave cure: 260±10°F, 120±20 min., 50	psi		

Date of fiber manufacture	5/92 - 12/94	Date of testing	5/93 - 4/95
Date of resin manufacture	1/93 - 12/94	Date of data submittal	6/96
Date of prepreg manufacture	4/93 - 3/95	Date of analysis	2/97
Date of composite manufacture	12/91 - 3/96		

	75°F/A	-65°F/A	180°F/A	160°F/W	
Tension, 1-axis	BM-B	SS-S	SS-S	SS-S	
Tension, 2-axis	SS-S	SS-S	SS-S	SS-S	
Tension, 3-axis					
Compression, 1-axis	SS-S	SS-S	SS-S	SS-S	
Compression, 2-axis					
Compression, 3-axis					
Shear, 12-plane	SS	SS	SS	SS	
Shear, 23-plane					
Shear, 31-plane					
SBS, 31-plane	S	S	S	S	

LAMINA PROPERTY SUMMARY

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

Data are also included for \boldsymbol{F}^{sbs} conditioned in eight fluids.

		Nominal	As Submitted	Test Method	
Fiber Density	(g/cm ³)	2.49		ASTM C 693	
Resin Density	(g/cm ³)	1.216		ASTM D 792	
Composite Density	(g/cm ³)	1.85	1.84 - 1.97		
Fiber Areal Weight	(g/m ²)	284	283 - 291	SRM 23B	
Fiber Volume	(%)	50	47.3 - 56.1		
Ply Thickness	(in)	0.009	0.0070 - 0.0097		

LAMINATE PROPERTY SUMMARY

	73°F/A				
[±45/0/∓ 45]					
Tension, x-axis	SS-S				
Tension, y-axis	SS-S				

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

Volume 2, Chapter 6 Glass Fiber Composites

MATERIA	AL: S2-4	49 43.5k/SP 38	1 unidirectiona	al tape			e 6.2.1(a)
RESIN C FIBER V(PLY THI(OLUME: 47.3	34 wt% COMP: DENSITY: 1.84-1.97 g/cm ³ 3-54.7 % VOID CONTENT: 0-0.07% 080-0.0096 in. MODULUS CALCULATION:			SGI/Ep 284-UT S2-449/SP 381 Tension, 1-axis [0]₅ 73/A, -65/A, 180/A		
TEST ME	THOD:		MODULUS	S CALCULATIO	DN:	B30, Mea	n, Screening
SRM	1 4-88		Chord	between 1000	and 6000 $\mu\epsilon$		
NORMAL	IZED BY: Spec	cimen thickness	and batch fibe	er areal weight	to 50% (0.009	00 in. CPT)	
	ture (°F) Content (%) m at T, RH	7: Amb		-6 Amb			80 bient
Source C		69	9	69	9	e	69
		Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean Minimum Maximum C.V.(%)	246 217 287 6.45	243 228 267 3.89	236 204 257 7.44	246 218 261 5.19	208 200 220 3.62	211 200 228 4.79
F ₁ ^{tu}	B-value Distribution	198 ANOVA	219 ANOVA	(1) ANOVA	(1) Weibull	(1) ANOVA	(1) ANOVA
(ksi)	C ₁ C ₂	16.8 2.82	9.78 2.45	21.4 16.6	252 28.3	8.15 9.69	11.7 14.1
	No. Specimens No. Batches Data Class	32 6 B30		2	11 2 Screening		11 2 ening
E_1^t	Mean Minimum Maximum C.V.(%)	6.91 6.32 7.54 4.34	6.83 6.47 7.22 2.68	6.93 6.41 7.24 3.03	7.24 6.91 7.53 3.26	6.62 6.42 6.78 1.62	6.70 6.55 7.09 2.48
(Msi)	No. Specimens No. Batches Data Class	32 6 Mean		11 2 Screening		11 2 Screening	
v_{12}^{t}	Mean No. Specimens No. Batches						
	Data Class Mean Minimum Maximum C.V.(%)		35600 33400 38300 3.83		34100 29500 36700 6.23		31500 30000 33800 4.21
$arepsilon_1^{ ext{tu}}$	B-value Distribution		32400 ANOVA		(1) ANOVA		(1) ANOVA
(με)	C ₁ C ₂		1400 2.28		2440 13.9		1390 7.11
	No. Specimens No. Batches Data Class	3: 6 B3	;	1 [.] 2 Scree			11 2 eening

Volume 2, Chapter 6 Glass Fiber Composites

MATERIA	AL: S2-4	149 43.5k/SP 38	1 unidirectiona	al tape			Table 6	
FIBER V	OLUME: 49.3	3 wt% -51.1 % 88-0.0092 in.	.1 % VOID CONTENT: 0-0.07% 0.0092 in.				SGI/Ep 284-UT S2-449/SP 381 Tension, 1-axis [0]₅ 160/W	
TEST ME	THOD:		MODULUS	S CALCUL	ATIO	N:	Scree	ning
SRM	1 4-88		Chord	between	1000 a	and 6000 µɛ		
	-	cimen thickness		er areal we	eight to	50% (0.0090	in. CPT)	
	Content (%) m at T, RH	16 W (2	et ?)					
		Normalized	Measured	Normali	zed	Measured	Normalized	Measured
	Mean Minimum Maximum C.V.(%)	113 105 119 3.90	115 106 120 3.22					
$\mathbf{F}_1^{ ext{tu}}$	B-value Distribution	(1) Weibull	(1) Weibull					
(ksi)	C ₁ C ₂	115 32.6	116 40.5					
	No. Specimens No. Batches Data Class	1: 2 Scree	<u>)</u>					
$\mathrm{E}_{1}^{\mathrm{t}}$	Mean Minimum Maximum C.V.(%)	6.86 6.52 7.25 3.19	6.95 6.71 7.16 2.06					
(Msi)	No. Specimens No. Batches Data Class	1: 2 Scree	<u>)</u>					
v_{12}^{t}	Mean No. Specimens No. Batches							
	Data Class Mean Minimum Maximum C.V.(%)		16500 15600 17100 2.76					
$arepsilon_1^{ ext{tu}}$	B-value Distribution		(1) Weibull					
(με)	C ₁ C ₂		16700 45.9					
	No. Specimens No. Batches Data Class	13 2 Scree	<u>)</u>					

Basis values are presented only for A and B data classes.
 Conditioned in 160°F water for 14 days.

MATER	RIAL: S2-4	49 43.5k/SP 38	31 unidirectiona	l tape		Table 6.2.1(c) SGI/Ep 284-UT	
FIBER	VOLUME: 51.0	2 wt% -53.2 % 81-0.0092 in.	COMP: D VOID COI		4-1.86 g/cm ³ .99%	S2-449/SP 381 Tension, 2-axis [90] ₁₀	
TEAT						73/A, -65A, 180/A, 160/W	
	IETHOD:			S CALCULATI		Screening	
SR	RM 4-88		Chord	between 1000	and 3000 µɛ (2	2)	
	NORMALIZED BY: Not normalized						
	rature (°F)	73	-65	180	160		
	e Content (%) ium at T, RH	Ambient	Ambient	Ambient	Wet (3)		
Source		69	69	69	69		
	Mean	9.0	9.1	7.5	4.2		
	Minimum	8.7	8.3	7.1	3.8		
	Maximum	9.3	9.8	7.6	4.7		
	C.V.(%)	2.3	4.7	2.7	7.5		
F ₂ ^{tu}	B-value Distribution	(1) Weibull	(1) Weibull	(1) Normal	(1) Weibull		
(ksi)	C ₁	9.1	9.3	7.5	4.3		
()	C ₂	49	24	0.20	14		
	No. Crosimono	10	44	0	10		
	No. Specimens No. Batches	10 2	11 2	6 1	10 2		
	Data Class	Screening	Screening	Screening	Screening		
	Mean	1.93	2.10	1.53	1.07		
	Minimum	1.85	1.88	1.47	1.00		
	Maximum	2.07	2.31	1.59	1.12		
E_2^t	C.V.(%)	3.31	5.57	2.58	3.23		
(Msi)	No. Specimens	10	11	6	10		
(11101)	No. Batches	2	2	1	2		
	Data Class	Screening	Screening	Screening	Screening		
v_{21}^{t}	Mean No. Specimens No. Batches						
21	Data Class						
	Mean	4700	4300	4900	3900		
	Minimum	4200	3800	4600	3400		
	Maximum	5100	4800	5100	4300		
	C.V.(%)	4.6	7.2	4.6	6.7		
$arepsilon_2^{ ext{tu}}$	B-value Distribution	(1) Nonpara.	(1) Weibull	(1) Normal	(1) Weibull		
(με)	C ₁	6	4500	4900	4000		
(µc)	C ₂	2.1	16	220	17		
	No. Specimens	10	11	6	10		
	No. Batches	2	2	1	2		
	Data Class	Screening	Screening	Screening	Screening		

Basis values are presented only for A and B data classes.
 Exception to SRM 4-88.
 Conditioned in 160°F water for 14 days.

Volume 2, Chapter 6 Glass Fiber Composites

MATERI	AL: \$2-4	49 43.5k/SP 38	1 unidirectiona	al tape		Table	6.2.1(d)
RESIN C FIBER V	ONTENT: 28-3 OLUME: 49.3 CKNESS: 0.00	3 wt% 56.1 % 80-0.0094 in. COMP: DENSITY: 1.90-1.94 g/cm ³ VOID CONTENT: 0.12-0.50% MODULUS CALCULATION:			-0.50%	SGI/Ep 284-UT S2-449/SP 381 Compression, 1-axis [0]₅ 73/A, -65/A, 180/A Screening	
SRM 1-88 Chord between 1000 and 3000							g
NORMAL	IZED BY: Spec		and batch fibe	er areal weight to	o 50% (0.0090		
Equilibriu	Content (%) m at T, RH	7: Amb	ient	-65 Ambi	ient	Am	80 bient
Source C	ode	6 Normalized		69 Normalized			<u>}9</u>
	Mean Minimum Maximum C.V.(%)	Normalized 168 141 199 10.4	Measured 182 149 215 10.8	Normalized 170 153 184 5.20	Measured 177 162 196 5.59	Normalized 150 137 166 6.70	Measured 166 154 179 4.93
F_1^{cu}	B-value Distribution	(1) Weibull 176	(1) Weibull 191	(1) Weibull 174	(1) ANOVA 10.9	(1) ANOVA	(1) Weibull 170
(ksi)	C_1 C_2	10.6	10.5	22.0	11.3	12.3 16.6	22.2
	No. Specimens No. Batches Data Class	20 2 Screening		14 2 Scree	ning	12 2 Screening	
E_1^c	Mean Minimum Maximum C.V.(%)	6.96 6.71 7.20 2.43	7.06 6.67 7.34 2.68	6.87 6.75 7.01 1.40	7.20 6.75 7.68 4.16	6.76 6.54 6.94 1.74	6.95 6.75 7.16 2.22
(Msi)	No. Specimens No. Batches Data Class	10 2 Screening		10 2 Scree		10 2 Screening	
v_{12}^{c}	Mean No. Specimens No. Batches						
	Data Class Mean Minimum Maximum C.V.(%)						
ε ₁ ^{cu} (με)	B-value Distribution C1						
	C ₂ No. Specimens No. Batches Data Class						

Volume 2, Chapter 6 Glass Fiber Composites

MATERIA	AL: S2-4	49 43.5k/SP 38	1 unidirectiona	al tape		Table	6.2.1(e)
FIBER V PLY THI	OLUME: 49.3 CKNESS: 0.00	3 wt% -56.1 % 82-0.0090 in.	COMP: DENSITY: 1.90-1.94 g/cm ³ VOID CONTENT: 0.12-0.50%		-0.50%	SGI/Ep 284-UT S2-449/SP 381 Compression, 1-axis [0]₅ 160/W	
TEST ME			MODULU	S CALCULATIC	DN:	Scre	ening
SRM	1 1-88		Chord	between 1000	and 3000 $\mu\epsilon$		
NORMAL	IZED BY: Spec	cimen thickness	and batch fibe	er areal weight t	to 50% (0.009	0 in. CPT)	
Tempera Moisture Equilibriu Source C	Content (%) m at T, RH	16 W (2 6	et ?)				
		Normalized	Measured	Normalized	Measured	Normalized	Measured
61	Mean Minimum Maximum C.V.(%) B-value	139 130 146 3.48 (1)	146 131 157 5.27 (1)				
F_1^{cu}	Distribution	Weibull	Weibull				
(ksi)	C ₁ C ₂	141 37.4	149 22.6				
	No. Specimens No. Batches Data Class	1 2 Scree	2				
E_1^c	Mean Minimum Maximum C.V.(%)	6.92 6.69 7.08 2.11	7.16 6.85 7.43 2.83				
(Msi)	No. Specimens No. Batches Data Class	1 2 Scree	2				
v_{12}^{c}	Mean No. Specimens No. Batches						
	Data Class						
	Mean Minimum Maximum C.V.(%)						
$\varepsilon_1^{ m cu}$	B-value Distribution						
(με)	C ₁ C ₂						
	No. Specimens No. Batches Data Class						

Basis values are presented only for A and B data classes.
 Conditioned in 160°F water for 14 days.

Volume 2, Chapter 6 Glass Fiber Composites

MATER	RIAL: S2-4	49 43.5k/SP 38	31 unidirectiona	ll tape		Table 6.2.1(f)		
FIBER	VOLUME: 51.1	2 wt% -54.5 % 81-0.0090 in.	COMP: D VOID CO		8-1.94 g/cm ³ 1-0.60%	SGI/Ep 284-UT S2-449/SP 381 Shear, 12-plane [±45] ₂₅ 73/A, -65A, 180/A, 160/W		
TEST N	IETHOD:		MODULU	S CALCULATIO	ON:	Screening		
SR	RM 7-88		Chord	between 500 a	nd 3000 με, ax	kial		
NORMA	NORMALIZED BY: Not normalized							
	rature (°F)	73	-65	180	160			
	e Content (%) ium at T, RH	Ambient	Ambient	Ambient	Wet (2)			
Source		69	69	69	69			
	Mean	14.3	13.6	11.8	9.5			
	Minimum Maximum	13.2 14.7	12.9 14.5	10.8 12.3	9.0 9.8			
	C.V.(%)	3.52	3.77	3.66	9.8 2.9			
F ₁₂ ^{su}	B-value Distribution	(1) Nonpara.	(1) Normal	(1) Weibull	(1) Weibull			
(ksi)	C ₁ C ₂	6 2.14	13.6 0.515	12.0 38.4	9.6 44			
	No. Specimens No. Batches	10 2	9 2	10 2	12 2			
	Data Class Mean	Screening 0.689	Screening 0.881	Screening 0.555	Screening 0.470			
	Minimum	0.648	0.837	0.541	0.455			
	Maximum	0.729	0.952	0.578	0.480			
G ₁₂	C.V.(%)	3.62	5.06	2.26	1.76			
(Msi)	No. Specimens	9	6	10	10			
	No. Batches Data Class	2 Screening	2 Screening	2 Screening	2 Screening			
	Data Class	Screening	Screening	Screening	Screening			

Basis values are presented only for A and B data classes.
 Conditioned in 160°F water for 14 days.

Volume 2, Chapter 6 Glass Fiber Composites

MATERIAL:	S2-449 43.5k/SP 3	81 unidirectiona	I tape		Table 6.2.1(g) SGI/Ep 284-UT
RESIN CONTENT: FIBER VOLUME: PLY THICKNESS:	30-34 wt% 47.6-53.1 % 0.0070-0.0092 in.	COMP: D VOID CO	ENSITY: 1.8 NTENT: 0.0	4-1.94 g/cm ³ -0.64%	S2-449/SP 381 SBS, 31-plane [0] ₁₂
TEST METHOD: SRM 8-88		MODULU	S CALCULATIO	ON:	73/A, -65A, 180/A, 160/W Screening
NORMALIZED BY:	Not normalized				
Temperature (°F) Moisture Content (%) Equilibrium at T, RH	73 Ambient	-65 Ambient	180 Ambient	160 Wet	
Source Code	69	69	69	(2) 69	
Mean Minimum Maximum	12.4 11.6 13.2 4.16	14.6 13.9 15.6 3.32	8.7 8.2 9.0 2.9	7.2 7.0 7.4 1.7	
C.V.(%) B-value F_{31}^{sbs} Distribution	(1) ANOVA	(1) Normal	(1) ANOVA	(1) Weibull	
(ksi) C ₁ C ₂	0.573 3.85	14.6 0.485	0.31 18	7.3 67	
No. Specimer No. Batches Data Class	ns 25 4 Screening	14 2 Screening	14 2 Screening	13 2 Screening	
		- Corooning	Corocinity		

Short beam strength test data are approved for Screening Data Class only.
 Conditioned in 160°F water for 14 days.

MATERIAL: RESIN CONTENT: FIBER VOLUME: PLY THICKNESS:	30 w 52.9	49 43.5k/SP 38 t% -53.1 % 792-0.00925 in	COMP: D VOID COI	ENSITY: 1.9	3-1.94 g/cm ³ -0.64%	Table 6.2.1 SGI/Ep 284 S2-449/SP SBS, 31-pla [0] ₁₂ 73/Fluida	-UT 381 ane
TEST METHOD:			MODULU	S CALCULATIO	ON:	Screenin	
SRM 8-88					_		
NORMALIZED BY:	Not ı	normalized					
Temperature (°F)		73	73	73	73		
Moisture Content (%) Equilibrium at T, RH		(2)	(3)	(4)	(5)		
Source Code		69	69	69	69		
Mean		11.8	12.3	11.6	11.9		
Minimum Maximum		11.0 12.3	11.8 13.0	9.40 12.8	11.4 12.6		
C.V.(%)		3.49	2.87	8.23	3.17		
$\begin{array}{c} & \text{B-value} \\ F_{31}^{sbs} & \text{Distribution} \end{array}$		(1) Weibull	(1) Normal	(1) ANOVA	(1) Normal		
(ksi) C ₁		11.9	12.4	1.07	11.9		
C ₂		34.7	0.355	12.2	0.376		
No. Specime No. Batches		14 2	14 2	14 2	14 2		
Data Class		Screening	Screening	Screening	Screening		

(4) Conditioned in MIL-H-5606 hydraulic fluid at 160°F for 90 days.

(5) Conditioned in MIL-T-5624 fuel at 75°F for 90 days. MIL-T-5624 was converted to MIL-PRF-5624 on November 22, 1996.

Short beam strength test data are approved for Screening Data Class only.
 Conditioned in MIL-A-8243 Anti-Icing Fluid at 32°F for 30 days.
 Conditioned in MIL-H-83282 hydraulic Fluid at 160°F for 90 days. MIL-H-83282 was converted to MIL-PRF-83282 on September 30, 1997.

Volume 2, Chapter 6 Glass Fiber Composites

	S2-449 43.5k/SP 38 30 wt%	31 unidirectiona COMP: D	3-1.94 g/cm ³	Table 6.2.1(i) SGI/Ep 284-UT S2-449/SP 381				
FIBER VOLUME:	52.9-53.1 % 0.00758-0.00933 in	VOID CO	NTENT: 0.0	-0.64%	SBS, 31-plane [0] ₁₂ 73/Fluids			
TEST METHOD:		MODULU	S CALCULATIO	ON:	Screening			
SRM 8-88								
NORMALIZED BY: Not normalized								
Temperature (°F)	73	73	73	73				
Moisture Content (%) Equilibrium at T, RH	(2)	(3)	(4)	(5)				
Source Code	69	69	69	69				
Mean	11.8	12.1	11.7	11.8				
Minimum Maximum	11.1 12.6	10.9 12.6	10.6 12.3	11.3 12.3				
C.V.(%)	3.47	3.84	4.02	2.91				
B-value East Distribution	(1) Weibull	(1) Weibull	(1) Weibull	(1) ANOVA				
131								
(ksi) C ₁ C ₂	12.0 30.7	12.3 39.5	11.9 37.2	0.386 12.6				
No. Specimens		14	13	14				
No. Batches Data Class	2 Screening	2 Screening	2 Screening	2 Screening				
		Corooning	g	Corcornig				
(1) Short beam strength	tost data are appr	avad far Saraar	ing Data Class		I			

(1) Short beam strength test data are approved for Screening Data Class only.

(2) Conditioned in MIL-L-23699 lubricating oil at 160°F for 90 days. MIL-L-23699 was converted to MIL-PRF-23699 on May 21, 1997.

(3) Conditioned in MIL-L-7808 lubricating oil at 160°F for 90 days. MIL-L-7808 was converted to MIL-PRF-7808 on May 2, 1997.

(4) Conditioned in MIL-C-87936 cleaning fluid at 75°F for 7 days. MIL-C-87936 was canceled on March 1, 1995 and replaced with MIL-C-87937. MIL-C-87937 was converted to MIL-PRF-87937 on August 14, 1997.

(5) Conditioned in ASTM D 740 methyl ethyl ketone (MEK) at 75°F for 7 days.

Volume 2, Chapter 6 Glass Fiber Composites

FIBER VO PLY THIO	ONTENT: 30-3 OLUME: 51.6 CKNESS: 0.00	2-449 43.5k/SP 381 unidirectional tape 30-31wt% COMP: DENSITY: 1.92-1.94 g/cm 1.6-53.5 % VOID CONTENT: 0-0.50% .0086-0.0089 in. MODULUS CALCULATION:				Table 6.2.1(j) SGI/Ep 284-UT S2-449/SP 381 Tension, x-axis [±45/0/±45]s 73/A		
							ening	
SRM	SRM 4-88 Chord between 1000 and 300							
	-	cimen thickness		er areal weight t	o 50% (0.009	0 in. CPT)		
	Content (%) m at T, RH	7 Amb	ient					
Source C	oue	Normalized	Measured	Normalized	Measured	Normalized	Measured	
	Mean Minimum Maximum C.V.(%) B-value	69.5 66.7 71.3 2.18 (1)	72.9 71.4 75.6 1.67 (1)					
F ^{tu} (ksi)	Distribution C ₁ C ₂	ANOVA 1.74 13.7	Normal 72.9 1.22					
	No. Specimens No. Batches Data Class	1 2 Scree	ening					
E_x^t	Mean Minimum Maximum C.V.(%)	2.87 2.78 2.96 2.21	3.01 2.94 3.11 1.58					
(Msi)	No. Specimens No. Batches Data Class	1 2 Scree	<u>)</u>					
$v_{\mathrm{xy}}^{\mathrm{t}}$	Mean No. Specimens No. Batches							
	Data Class Mean Minimum Maximum C.V.(%)		24200 23600 24900 1.69					
$\varepsilon_{\rm x}^{\rm tu}$	B-value Distribution C ₁		(1) Weibull 24400					
(με)	C_1 C_2		65.4					
	- No. Specimens No. Batches Data Class	1 2 Scree	0					

Volume 2, Chapter 6 Glass Fiber Composites

MATERI	AL: S2-4	149 43.5k/SP 38	1 unidirectiona	al tape			Table 6 SGI/Ep	
FIBER V	OLUME: 51.6	1 wt% -53.5 % 83-0.0090 in.	Comp: De Void Con		1.92 0-0.	-1.94 g/cm ³ 50%	S2-449/SP 381 Tension, y-axis [±45/90/±45] _s 73/A	
TEST ME	ETHOD:		MODULUS	S CALCU	LATIC	DN:	Scree	
SRN	/ 4-88		Chord	between	1000	and 3000 $\mu\epsilon$		
NORMAL	LIZED BY: Spe	cimen thickness	and batch fibe	er areal w	eight	to 50% (0.009)	0 in. CPT)	
	Content (%) Im at T, RH	7: Amb	ient					
Source C	Jude	Normalized	Measured	Normal	ized	Measured	Normalized	Measured
	Mean Minimum Maximum C.V.(%)	24.9 23.9 25.9 2.29	26.2 24.7 27.3 2.94					
F _y ^{tu}	B-value Distribution	(1) Weibull	(1) Weibull					
(ksi)	$\begin{array}{c} C_1 \\ C_2 \end{array}$	25.1 47.1	26.5 42.2					
	No. Specimens No. Batches Data Class	10 2 Scree						
E_y^t	Mean Minimum Maximum C.V.(%)	2.15 2.10 2.20 1.33	2.26 2.18 2.39 3.50					
(Msi)	No. Specimens No. Batches Data Class	10 2 Scree	2					
v_{yx}^t	Mean No. Specimens No. Batches							
	Data Class Mean		11600					
	Minimum Maximum C.V.(%)		10900 12000 2.65					
$\boldsymbol{\varepsilon}_{\mathrm{y}}^{\mathrm{tu}}$	B-value Distribution		(1) Weibull					
(με)	C ₁ C ₂		11700 49.8					
	No. Specimens No. Batches Data Class	10 2 Scree	<u>.</u>					

6.2.2 S2-449 17k/SP 381 unidirectional tape

Material Description:

Material: S2-449 43.5k/3M PR381

- Form: Unidirectional tape, fiber areal weight of 284 g/m², typical cured resin content of 28-33%, typical cured ply thickness of 0.0081 0.009 inches.
- Processing: Autoclave cure; 260° F, 50 psi for two hours

General Supplier Information:

- Fiber: S2 glass has enhanced properties in strength, modulus impact resistance and fatigue when compared to conventional E glass roving. The sizing for these fibers is an epoxy compatible 449 finish material. Rovings of 43,500 filaments. Typical tensile modulus is 12.5 to 13.0 Msi. Typical tensile strength is 665,000 psi.
- Matrix: PR381 is a 250°F curing epoxy resin providing properties similar to conventional 350°F curing systems. Light tack for up to 30 days at 75°F.

Maximum Short Term Service Temperature: 220°F (dry), 160°F (wet)

Typical applications: Primary and secondary structural applications where improved fatigue and excellent mechanical strength is important such as helicopters and general aviation.

6.2.2 S2-449 17k/SP 381 unidirectional tape

MATERIAL:	S2-449 17k/SP 381 unidirectional tape	·						
FORM:	3M Scotchply SP 381 Uni S29 111BW 33 RC							
FIBER:	Owens Corning S2-449, no twist, no surface treatment, typical 449 glass sizing	MATRIX:	3M SP 381					
T _g (dry):	291°F T _g (wet): 234°F	T _g METHOD:	SRM 18, RDA, G" peak					
PROCESSING:	Autoclave cure: 260±10°F, 120±20 min., 50 psi							

Date of fiber manufacture	8/91 - 12/94	Date of testing	6/93 - 4/96
Date of resin manufacture	11/91 - 5/95	Date of data submittal	6/96
Date of prepreg manufacture	11/91 - 2/96	Date of analysis	2/97
Date of composite manufacture	12/91 - 3/96		

LAMINA PROPERTY SUMMARY

	73°F/A	-65°F/A	180°F/A	160°F/W	
Tension, 1-axis	bM-b	SS-S	SS-S	SS-S	
Tension, 2-axis	SS-S	SS-S	SS-S	SS-S	
Tension, 3-axis					
Compression, 1-axis	SS-S	SS-S	SS-S	SS-S	
Compression, 2-axis					
Compression, 3-axis					
Shear, 12-plane	IS	IS	IS	SS	
Shear, 23-plane					
Shear, 31-plane					
SBS, 31-plane	S	S	S	S	

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

Data are also included for F^{sbs} conditioned in eight fluids.

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	2.49		ASTM C 693
Resin Density	(g/cm ³)	1.216		ASTM D 792
Composite Density	(g/cm ³)	1.85	1.82 - 1.94	
Fiber Areal Weight	(g/m ²)	111	111 - 113	SRM 23B
Fiber Volume	(%)	50	47.6 - 55.2	
Ply Thickness	(in)	0.0035	0.00303 - 0.00375	

LAMINATE PROPERTY SUMMARY

	73°F/A				
[±45/0/∓ 45]					
Tension, x-axis	SS-S				
Tension, y-axis	SS-S				

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

Volume 2, Chapter 6 Glass Fiber Composites

MATERIA	AL: S2-4	49 17k/SP 381	unidirectional	tape		Table 6	6.2.2(a)	
RESIN C FIBER V(PLY THI(OLUME: 47.6	6 wt% -54.0 % 32-0.0038 in.	COMP: DE VOID CON	1.93 g/cm ³ .17%	S2-449/ Tensior [0] 73/A, -65	SGI/Ep 111-UT S2-449/SP 381 Tension, 1-axis [0] ₁₂ 73/A, -65/A, 180/A		
TEST ME	THOD:	B18, Mear Scree	n, Interim, ening					
SRM	1 4-88	and 6000 με						
NORMAL	IZED BY: Spec	cimen thickness	and batch fibe	er areal weight to	o 50% (0.0035	in. CPT)		
	ture (°F) Content (%) m at T, RH	7: Amb			-65 180 Ambient Ambient 70 70			
Source C		7	-		-	70		
		Normalized	Measured	Normalized	Measured	Normalized	Measured	
	Mean Minimum Maximum C.V.(%)	255 243 277 3.40	248 228 274 5.07	267 233 287 6.52	274 251 302 5.96	225 218 237 3.13	225 216 234 2.59	
F ₁ ^{tu}	B-value Distribution	238 Normal	(2) ANOVA	(1) Weibull	(1) Weibull	(1) Weibull	(1) Weibull	
(ksi)	C_1 C_2	255 8.65	13.6 3.53	274 21.3	281 18.1	228 32.9	228 43.2	
	No. Specimens No. Batches Data Class	2 4 B1	Ļ	1 2 Scree		11 2 Scree		
E_1^t	Mean Minimum Maximum C.V.(%)	6.93 6.61 7.18 2.29	6.75 6.26 7.16 4.37	7.01 6.70 7.31 2.98	7.19 6.98 7.49 2.19	6.73 6.50 7.09 2.80	6.73 6.50 7.09 2.95	
(Msi)	No. Specimens No. Batches	2		2	11 2		11 2	
v ₁₂ ^t	Data Class Mean No. Specimens No. Batches	Me	an	Scree	ening	Scree	ning	
	Data Class Mean Minimum Maximum C.V.(%)	36800 34600 38600 3.09			38000 33500 40900 5.85		33400 31000 35100 3.84	
$arepsilon_1^{ ext{tu}}$	B-value Distribution	34100 Weibull			(1) Weibull		(1) Weibull	
(με)	C ₁ C ₂		37300 37.9		39000 22.5		34000 34.9	
	No. Specimens No. Batches Data Class	21 4 B18		11 2 Screening		11 2 Screening		

(1) Basis values are presented only for A and B data classes.(2) B-basis values calculated from less than five batches of data using the ANOVA method are not presented.

Volume 2, Chapter 6 Glass Fiber Composites

MATERIA	AL: S2-	449 17k/SP 381	unidirectional	tape			6.2.2(b)
FIBER V	OLUME: 49.	31 wt% 0-50.1 % 034-0.0038 in.	COMP: DE VOID CON		S2-449 Tensio	SGI/Ep 111-UT S2-449/SP 381 Tension, 1-axis [0] ₁₂ 160/W	
TEST METHOD: MODULUS CALCULATION:							ening
SRM	1 4-88						
NORMAL	-IZED BY: Spo	ecimen thickness	and batch fibe	er areal weight t	to 50% (0.0035	in. CPT)	
	Content (%) Im at T, RH	16 W (2 7	et ?)				
		Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean Minimum Maximum C.V.(%)	116 107 123 4.34	113 108 123 3.54				
F_1^{tu}	B-value Distribution	(1) Weibull	(1) Normal				
(ksi)	C ₁ C ₂	118 26.8	113 4.01				
	No. Specimens No. Batches Data Class	1 2 Scree	2				
E_1^t	Mean Minimum Maximum C.V.(%)	6.84 6.50 7.12 2.57	6.71 6.49 6.97 1.99				
(Msi)	No. Specimens No. Batches Data Class	1 2 Scree	2				
v_{12}^t	Mean No. Specimens No. Batches Data Class						
	Mean Minimum Maximum C.V.(%)		16900 15800 18100 3.90				
$arepsilon_1^{ ext{tu}}$	B-value Distribution		(1) Weibull				
(με)	C ₁ C ₂		17200 28.7				
	No. Specimens No. Batches Data Class	1 2 Scree	3				

Basis values are presented only for A and B data classes.
 Conditioned in 160°F water for 14 days.

MATER	RIAL: S2-4	449 17k/SP 381	unidirectional t	ape		Table 6.2.2(c) SGI/Ep 111-UT		
FIBER	VOLUME: 48.8	31 wt% 3-50.1 %)33-0.0036 in.	COMP: D VOID COI		8-1.92 g/cm ³ %	S2-449/SP 381 Tension, 2-axis [90] ₂₀		
TEOTA						73/A, -65/A, 180/A, 160/W Screening		
	TEST METHOD:MODULUS CALCULATION:SRM 4-88Chord between 1000 and 3000 με (2							
01	(101 4-00	απα 3000 με (2)					
	NORMALIZED BY: Not normalized							
Moistur Equilibr	rature (°F) e Content (%) rium at T, RH	73 Ambient	-65 Ambient	180 Ambient	160 Wet (3)			
Source		70	70	70	70			
	Mean Minimum	8.7	10.0	6.4 5.9	3.6 3.1			
	Minimum Maximum	8.1 9.0	9.6 10.3	5.9 6.7	3.1 3.9			
	C.V.(%)	3.9	3.6	4.0	9.0			
F ₂ ^{tu}	B-value Distribution	(1) Normal	(4)	(1) Normal	(1) Normal			
(ksi)	C ₁	8.7		6.4	3.6			
	C ₂	0.34		0.26	0.32			
	No. Specimens	5	3	8	5			
	No. Batches Data Class	1 Screening	1 Screening	2 Screening	1 Screening			
	Mean	1.84	2.11	1.42	1.10			
	Minimum	1.82	2.06	1.34	1.05			
	Maximum	1.91	2.15	1.55	1.16			
E_2^t	C.V.(%)	2.05	2.14	6.43	4.59			
(Msi)	No. Specimens No. Batches	5	3 1	4 1	5 1			
	Data Class	Screening	Screening	Screening	Screening			
	Mean	Corconing	Corconing	Corconing	Concoming			
v_{21}^{t}	No. Specimens No. Batches Data Class							
	Mean	4700	4730	4450	3280			
	Minimum	4400	4500	4200	3000			
	Maximum	4900	5000	4800	3600			
	C.V.(%)	4.26	5.32	5.95	8.18			
$arepsilon_2^{ ext{tu}}$	B-value Distribution	(1) Normal	(4)	(1) Normal	(1) Normal			
	C ₁	4700		4450	3280			
(με)	C_1 C_2	200.0		265	268			
	No. Specimens	5	3	4	5			
	No. Batches	1 Scrooping	1 Scrooping	1 Scrooning	1 Scrooning			
L	Data Class	Screening	Screening	Screening	Screening			

(1) Basis values are presented only for A and B data classes.

(1) Data Values are presented only for A and D data diabeted.
 (2) Exception to SRM 4-88.
 (3) Conditioned in 160°F water for 14 days.
 (4) The statistical analysis is not completed for less than four specimens.

Volume 2, Chapter 6 Glass Fiber Composites

MATERI	AI · \$2-A	49 17k/SP 381	unidirectional t	ane		Table	6.2.2(d)		
RESIN C FIBER V	CONTENT: 28-2 OLUME: 50.1	9 wt% -54.0 % 32-0.0035 in.	COMP: DE VOID CON	SGI/Ep S2-449 Compress [0 73/A, -65	SGI/Ep 111-UT S2-449/SP 381 Compression, 1-axis [0] ₁₂ 73/A, -65/A, 180/A				
TEST ME	ETHOD:		MODULUS	S CALCULATIO	N:	Scre	ening		
SRN	vl 1-88		Chord	between 1000 a	and 3000 με				
NORMALIZED BY: Specimen thickness and batch fiber areal weight to 50% (0.0035 in. CPT)									
	ature (°F) Content (%) um at T, RH	7 Amb		-65 180 Ambient Ambier					
Source C		7	0	70)	7	0		
		Normalized	Measured	Normalized	Measured	Normalized	Measured		
	Mean Minimum Maximum C.V.(%)	172 145 193 8.09	178 142 198 9.35	166 147 184 6.62	177 152 198 7.46	165 146 185 6.81	175 155 196 7.28		
F ₁ ^{cu}	B-value Distribution	(1) Weibull	(1) Weibull	(1) Weibull	(1) Weibull	(1) Weibull	(1) Weibull		
(ksi)	C ₁ C ₂	178 15.2	185 14.7	171 17.7	183 16.0	170 16.6	181 16.4		
	No. Specimens No. Batches Data Class	1 2 Scree	2	13 2 Scree		2	16.6 16.4 12 2 Screening 5.97 7.47		
E ₁ ^c	Mean Minimum Maximum C.V.(%)	6.86 6.43 7.24 3.79	7.14 6.81 7.52 3.39	6.91 6.63 7.10 2.35	7.19 6.96 7.49 2.22	6.97 6.63 7.24 3.18	7.47 7.19 7.59 1.85		
(Msi)	No. Specimens No. Batches	1	2	1(2		1) 2	2		
<i>v</i> ^c ₁₂	Data Class Mean No. Specimens No. Batches Data Class	Scree	ening	Scree	ning	Scree	ening		
	Mean Minimum Maximum C.V.(%)								
$arepsilon_1^{ m cu}$ (µe)	B-value Distribution C1								
	C ₂ No. Specimens No. Batches Data Class								

Volume 2, Chapter 6 Glass Fiber Composites

MATERI	AL: S2-4	49 17k/SP 381	unidirectional	tape				6.2.2(e) 111-UT
FIBER V	RESIN CONTENT: 28-29 wt% COMP: DENSITY: 1.85-1.92 g/cm ³ FIBER VOLUME: 50.1-54.0 % VOID CONTENT: 0-1.15% PLY THICKNESS: 0.0033-0.0037 in. VOID CONTENT: 0-1.15%				S2-449 Compress [0	S2-449/SP 381 Compression, 1-axis [0] ₁₂ 160/W		
TEST METHOD: MODULUS CALCULATION:							ening	
SRM	N 1-88		Chord	between 10	00 a	nd 3000 με		
NORMAI	LIZED BY: Spec	cimen thickness	and batch fibe	er areal weig	ht to	50% (0.0035	in. CPT)	
	Content (%) um at T, RH	16 W (2 7	et ?)					
		Normalized	Measured	Normalize	d	Measured	Normalized	Measured
	Mean Minimum Maximum C.V.(%)	135 124 143 3.51	137 123 146 4.83					
F_1^{cu}	B-value Distribution	(1) Nonpara.	(1) ANOVA					
(ksi)	C ₁ C ₂	6 2.14	8.02 16.7					
	No. Specimens No. Batches Data Class	1 2 Scree	2					
E_1^c	Mean Minimum Maximum C.V.(%)	6.96 6.69 7.24 2.44	6.97 6.75 7.23 2.16					
(Msi)	No. Specimens No. Batches Data Class	1 2 Scree	2					
<i>v</i> ^c ₁₂	Mean No. Specimens No. Batches Data Class		211119					
	Mean Minimum Maximum C.V.(%)							
ε_1^{cu}	B-value Distribution C1							
(με)	C_1 C_2							
	No. Specimens No. Batches Data Class							

Basis values are presented only for A and B data classes.
 Conditioned in 160°F water for 14 days.

Volume 2, Chapter 6 Glass Fiber Composites

MATER	RIAL: S2-	449 17k/SP 381	unidirectional t	ape		Table 6.2.2(f)	
FIBER	VOLUME: 48.8	32 wt% 3-51.6 %)32-0.0037 in.	COMP: D VOID COI		SGI/Ep 111-UT S2-449/SP 381 Shear, 12-plane [±45]₅s 73/A, -65/A,180/A,		
TEST	METHOD:		MODULU	S CALCULATIO	ON:	160/W Interim, Screening	
	RM 7-88				and 3000 με , ax		
NORM	NORMALIZED BY: Not normalized						
Moistur	rature (°F) re Content (%) rium at T, RH	73 Ambient 70	-65 Ambient 70	180 Ambient 70	160 Wet (2) 70		
Source	Mean Minimum Maximum C.V.(%)	19.7 18.9 20.3 2.18	25.7 24.7 26.2 1.85	15.0 14.0 15.5 2.67	11.1 10.7 11.9 3.43		
F ₁₂ ^{su}	B-value Distribution	(1) Weibull	(1) Weibull	(1) ANOVA	(1) ANOVA		
(ksi)	C ₁ C ₂	20.0 61.1	25.9 73.2	0.452 4.88	0.442 5.83		
	No. Specimens No. Batches Data Class	16 3 Interim	16 3 Interim	16 3 Interim	14 3 Screening		
G ₁₂	Mean Minimum Maximum C.V.(%)	0.681 0.627 0.745 5.29	0.808 0.772 0.850 3.32	0.539 0.513 0.583 4.06	0.467 0.440 0.490 2.96		
(Msi)	No. Specimens No. Batches Data Class	9 2 Screening	9 2 Screening	10 2 Screening	10 2 Screening		

Basis values are presented only for A and B data classes.
 Conditioned in 160°F water for 14 days.

Volume 2, Chapter 6 Glass Fiber Composites

	CONTENT: 27-3	149 17k/SP 381 5 wt% -55.2 %	COMP: D VOID COI	ENSITY: 1.8	5-1.94 g/cm ³ -0.12%	Table 6.2.2(g) SGI/Ep 111-UT S2-449/SP 381 SBS, 31-plane		
		29-0.0035 in.			[0] ₃₀ 73/A, -65/A, 180/A, 160/W			
TEST METHOD: MODULUS CALCULATION: SRM 8-88						Screening		
NORMA	NORMALIZED BY: Not normalized							
Moistur Equilibr	rature (°F) e Content (%) ium at T, RH	73 Ambient	-65 Ambient	180 Ambient	160 Wet (2)			
Source		70	70	70	70			
	Mean	12.6	14.9	9.5	7.6			
	Minimum	11.6	13.1	9.1	7.0			
	Maximum	13.7	16.8	9.8	8.7			
	C.V.(%)	4.64	6.89	2.2	7.1			
	B-value	(1)	(1)	(1)	(1)			
F ₃₁ ^{sbs}	Distribution	ANOVA	Weibull	Normal	ANOVA			
(ksi)	C ₁ C ₂	0.613 2.77	15.4 17.1	9.5 0.21	0.63 5.2			
	No. Specimens	32	14	17	18			
	No. Batches	5	2	3	3			
	Data Class	Screening	Screening	Screening	Screening			
L								

Short beam strength test data are approved for Screening Data Class only.
 Conditioned in 160°F water for 14 days.

MATERIAL: S2-4	49 17k/SP 381	Table 6.2.2(h) SGI/Ep 111-UT							
FIBER VOLUME: 50.1	0 wt% -51.6 % 33-0.0037 in.	COMP: D VOID COI		S2-449/SP 381 SBS, 31-plane [0] ₃₀ 73/Fluids					
TEST METHOD:		MODULU	S CALCULATIO	ON:	Screening				
SRM 8-88									
NORMALIZED BY: Not normalized									
Temperature (°F)	73	73	73	73					
Moisture Content (%) Equilibrium at T, RH	(2)	(3)	(4)	(5)					
Source Code	70	70	70	70					
Mean	12.0	12.4	12.6	12.1					
Minimum Maximum	10.7 13.0	10.9 13.4	11.3 13.5	10.5 12.8					
C.V.(%)	5.20	5.81	4.44	5.22					
$\begin{array}{c} \text{B-value} \\ F_{31}^{sbs} & \text{Distribution} \end{array}$	(1) Weibull	(1) Weibull	(1) Weibull	(1) ANOVA					
(ksi) C ₁ C ₂	12.3 24.0	12.7 21.9	12.9 27.8	0.683 9.78					
No. Specimens No. Batches Data Class	12 2 Screening	14 2 Screening	14 2 Screening	14 2 Screening					

(1) Short beam strength test data are approved for Screening Data Class only.

(2) Conditioned in MIL-A-8243 Anti-Icing Fluid at 32°F for 30 days.

⁽³⁾ Conditioned in MIL-H-83282 hydraulic fluid at 160°F for 90 days. MIL-H-83282 was converted to MIL-PRF-83282 on September 30, 1997.

⁽⁴⁾ Conditioned in MIL-H-5606 hydraulic fluid at 160°F for 90 days.

⁽⁵⁾ Conditioned in MIL-T-5624 fuel at 75°F for 90 days. MIL-T-5624 was converted to MIL-PRF-5624 on November 22, 1996.

MATERIAL: S2-	Table 6.2.2(i) SGI/Ep 111-UT										
FIBER VOLUME: 50.1	30 wt% I-51.6 %)33-0.0037 in.	COMP: DI VOID COI	S2-449/SP 381 SBS, 31-plane [0] ₃₀ 73/Fluids								
TEST METHOD:	Screening										
	SRM 8-88 NORMALIZED BY: Not normalized										
Temperature (°F) Moisture Content (%) Equilibrium at T, RH	73 (2)	73 (3)	73 (4)	73 (5)							
Source Code	70	70	70	70							
Mean Minimum Maximum C.V.(%)	12.6 10.3 13.5 6.49	12.6 11.6 13.6 3.86	11.8 11.1 12.4 3.79	11.9 10.2 12.9 6.19							
$\begin{array}{c} \text{B-value} \\ F_{31}^{sbs} & \text{Distribution} \end{array}$	(1) Weibull	(1) Weibull	(1) Weibull	(1) Weibull							
(ksi) C ₁ C ₂	12.9 23.1	12.8 26.6	12.0 32.8	12.2 21.5							
No. Specimens No. Batches Data Class	14 2 Screening	14 2 Screening	13 2 Screening	13 2 Screening							
(1) Short beam strength te			ing Data Class								

(1) Short beam strength test data are approved for Screening Data Class only.

(2) Conditioned in MIL-L-23699 lubricating oil at 160°F for 90 days. MIL-L-23699 was converted to MIL-PRF-23699 on May 21, 1997.

(3) Conditioned in MIL-L-7808 lubricating oil at 160°F for 90 days. MIL-L-7808 was converted to MIL-PRF-7808 on May 2, 1997.

(4) Conditioned in MIL-C-87936 cleaning fluid at 75°F for 7 days. MIL-C-87936 was canceled on March 1, 1995 and replaced with MIL-C-87937. MIL-C-87937 was converted to MIL-PRF-87937 on August 14, 1997.

(5) Conditioned in ASTM D 740 methyl ethyl ketone (MEK) at 75°F for 7 days.

Volume 2, Chapter 6 Glass Fiber Composites

MATERI	AL: S2-4	49 17k/SP 381	unidirectional	tape			6.2.2(j)
FIBER V	OLUME: 50.1	2 wt% -51.6 % 34-0.0036 in.	S2-449 Tensio [±45/0	SGI/Ep 111-UT S2-449/SP 381 Tension, x-axis [±45/0/±45] _{2s} 73/A			
TEST ME	ETHOD:		MODULUS	S CALCULATIO	ON:		ening
SRN	Л 4-88		Chord	between 1000	and 3000 με		
NORMAL	LIZED BY: Spec	cimen thickness	and batch fibe	er areal weight	to 50% (0.0035	in. CPT)	
	Content (%) um at T, RH	7: Amb	ient				
		Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean Minimum Maximum C.V.(%)	69.7 68.1 72.5 1.78	71.4 69.8 73.9 1.92				
F _x ^{tu}	B-value Distribution	(1) Normal	(1) Weibull				
(ksi)	C ₁ C ₂	69.7 1.24	72.1 55.0				
	No. Specimens No. Batches Data Class	10 2 Scree					
$\mathbf{E}_{\mathbf{x}}^{t}$	Mean Minimum Maximum C.V.(%)	2.90 2.80 2.96 1.86	2.97 2.85 3.08 2.30				
(Msi)	No. Specimens No. Batches Data Class	1(2 Scree					
v_{xy}^t	Mean No. Specimens No. Batches						
	Data Class Mean Minimum		24100 23300				
	Maximum C.V.(%)		25200 2.49				
$\varepsilon_{\rm x}^{\rm tu}$	B-value Distribution		(1) Weibull				
(με)	C ₁ C ₂		24400 40.9				
	No. Specimens No. Batches Data Class	10 2 Scree					

Volume 2, Chapter 6 Glass Fiber Composites

MATERI	AL: S2-4	149 17k/SP 381	unidirectional	tape			Table 6.2.2(k)
FIBER V	OLUME: 50.1	30-32 wt%COMP: DENSITY:1.87-1.88 g/cm350.1 %VOID CONTENT:0.0-0.60%0.0035-0.0036 in.0.0035-0.0036 in.0.0035-0.0036 in.					SGI/Ep 111-UT S2-449/SP 381 Tension, y-axis [±45/90/±45] _{2s} 73/A
TEST ME			MODULUS	S CALCU		1:	Screening
SRN	A 4-88		Chord	between	1000 a	nd 3000 με	
NORMAL	LIZED BY: Spe	cimen thickness	and batch fibe	er areal we	eight to	50% (0.0035	in. CPT)
	Content (%) Im at T, RH	7 Amb	pient				
oource c	Joue	Normalized	Measured	Normal	ized	Measured	Normalized Measured
	Mean Minimum Maximum C.V.(%)	36.2 35.3 37.1 1.77	36.6 35.8 37.6 1.77				
F _y ^{tu}	B-value Distribution	(1) ANOVA	(1) ANOVA				
(ksi)	C ₁ C ₂	0.813 18.6	0.755 14.8				
	No. Specimens No. Batches Data Class	1 2 Scree	2				
E_y^t	Mean Minimum Maximum C.V.(%)	2.21 2.14 2.28 1.88	2.24 2.17 2.31 2.01				
(Msi)	No. Specimens No. Batches Data Class	1 2 Scree	2				
$v_{\rm xy}^{\rm t}$	Mean No. Specimens No. Batches						
	Data Class Mean Minimum		16400 15600				
	Maximum C.V.(%)		16800 2.40				
$arepsilon_{ m y}^{ m tu}$	B-value Distribution		(1) Weibull				
(με)	C ₁ C ₂		16500 58.7				
	No. Specimens No. Batches Data Class	1 2 Scree	<u>)</u>				

6.2.3 7781G 816/PR381 plain weave fabric

Material Description:

Material: 7781 E-glass/3M PR381

Form: Fiber areal weight of 300 g/m², typical cured resin content of 32-38%, typical cured ply thickness of 0.009 - 0.0105 inches.

Processing: Autoclave cure; 260° F, 50 psi for two hours

General Supplier Information:

- Fiber: Continuous, E-glass fiber. Typical tensile modulus is 10 x 10⁶ psi. Typical tensile strength is 500,000 psi.
- Matrix: PR381 is a 250°F curing epoxy resin providing properties similar to conventional 350°F curing systems. Light tack for up to 30 days at 75°F.

Maximum Short Term Service Temperature: 220°F (dry), 160°F (wet)

Typical applications: Aircraft secondary structure, fuselage skins and general industrial applications where improved fatigue and excellent mechanical strengths are required.

6.2.3 7781 G-816/PR381 plain weave fabric

MATERIAL:	7781G 816/PR 381 plain weave fabric	EGI/Ep 300-PW 7781G/PR 381
FORM:	3M SP 381/7781 E-Glass Fabric Prepreg, 57 Yarn Count/in. (Warp), 54 Yarn Count/in. (Fill)	Summary
FIBER:	Clark-Schwebel 7781 E-glass Fabric, per MATRIX: 3M PR 381 MIL-C-9084C Type VIII B, Yarn DE-75 1/0.0 twist, no surface treatment, 558 Finish	
T _g (ambient):	282/F T _g (wet): 225 /F T _g METHOD: SRM-18, DMA	E' knee
PROCESSING:	Autoclave cure: 260/F, 100 min., 50 psi	

Date of fiber manufacture	11/92 - 7/95	Date of testing	3/93 - 4/96
Date of resin manufacture	12/92 - 3/96	Date of data submittal	6/96
Date of prepreg manufacture	12/92 - 3/96	Date of analysis	8/97
Date of composite manufacture	3/93 - 4/96		

73/F/A	220/F/A		
II-I	SS-S		
S			
I	S		
	II-I S	S	II-I SS-S SS II-I

LAMINA PROPERTY SUMMARY

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	2.6		ASTM C 693
Resin Density	(g/cm ³)			ASTM D 792
Composite Density	(g/cm ³)	1.85	1.75 - 2.04	ASTM D 792
Fiber Areal Weight	(g/m ²)	300	288 - 297	SRM 23B
Fiber Volume	(%)	48	43.0 - 50.9	SRM 10
Ply Thickness	(in)	0.0099	0.0087 - 0.0104	

LAMINATE PROPERTY SUMMARY

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

MATERIAL:	7781G 816/PR 381 pla	in weave fabric	Table 6.2.3(a) EGI/Ep 300-PW
RESIN CONTENT: FIBER VOLUME: PLY THICKNESS:	34-36 wt% 43.0-48.4% 0.0091-0.0104 in.	COMP. DENSITY: 1.75-1.97 g/cm ³ VOID CONTENT: -	7781G/PR 381 Tension, 1-axis [0]₅ 73/A, 220/A
TEST METHOD:		MODULUS CALCULATION:	Interim, Screening
SRM 4-88 (1)		Chord between 1000 and 6000 $\mu\epsilon$	

NORMALIZED BY: Specimen thickness and batch fiber areal weight to 50% (0.0091 in. CPT)

Tempera	ture(°F)	7	3	22	20	
Moisture	Content(%)		pient	Amb		
Equilibrium at T, RH		-	0	72		
Source C	ode	7 Normalized	2 Measured	Normalized	2 Measured	
	Mean	74.9	70.9	71.3	67.5	
	Minimum	70.4	62.9	67.0	60.5	
	Maximum	79.6	77.8	77.4	74.4	
	C.V. (%)	3.66	7.07	4.02	5.89	
5 2	B-value	(2)	(2)	(2)	(2)	
F_1^{tu}	Distribution	ANOVA	ANOVA	Weibull	ANOVA	
(ksi)	C ₁	2.90	5.37	72.7	4.22	
	C ₂	3.10	3.26	24.9	3.45	
	No. Specimens	1		1:		
	No. Batches		5 urien	4 Soro		
	Data Class Mean	3.83	erim 3.64	Scree 3.64	3.44	
	Minimum	3.70	3.37	3.45	3.24	
	Maximum	3.97	3.96	3.75	3.77	
E_1^t	C.V. (%)	2.63	4.51	2.78	5.40	
(Msi)	No. Specimens	1	5	1:	3	
(10151)	No. Batches		5	4		
	Data Class	Inte	erim	Scree	ening	
	Mean					
	No. Specimens					
v_{12}^{t}	No. Batches					
	Data Class					
	Mean Minimum		17800 15200		19600	
	Maximum		19600		18400 21100	
	C.V. (%)		6.23		4.01	
	B-value		(2)		(2)	
$\mathcal{E}_1^{ ext{tu}}$	Distribution		ANOVA		Weibull	
(με)	C ₁		1310		20000	
	C ₂		3.32		25.7	
	No. Specimens		5	1:		
	No. Batches	Ę		4		
	Data Class	Inte	rim	Scree	ening	

(1) Three batches were tested according to SRM 4R-94 with modulus calculated as noted above.

MATERIAL	L: 7781G	816/PR 381 pla	in weave fabri	с		Table 6.		
RESIN CONTENT: 34-36 wt% FIBER VOLUME: 43.0-50.9% PLY THICKNESS: 0.0088-0.0103 in.				COMP. DENSITY: 1.76-2.04 g/cm ³ VOID CONTENT: %			EGI/Ep 300-PW 7781G/PR 381 SBS, 13-axis [0]₅s 73/A	
TEST MET SRM 8-88			MODULUS NA	CALCULATIO	N:	Scree		
	ZED BY: Not nor	malized						
Temperatu Moisture C Equilibrium	content(%) n at T, RH	73 Ambient						
Source Co	de Mean Minimum Maximum C.V. (%)	72 10.4 9.6 11.5 4.8						
F ₁₃ (ksi)	B-value Distribution C1	(2) ANOVA 0.53						
	C ₂ No. Specimens No. Batches Data Class	3.2 22 5 Screening						

Three batches were tested according to SRM 8R-94.
 Short beam strength test data are approved for Screening Data Class only.

MATERIAL:	7781G 8	316/PR 381 pla	in weave fabri	с	Г	Table 6. EGI/Ep 3		
RESIN CONTENT: 34-36 wt% FIBER VOLUME: 43.4-48.7% PLY THICKNESS: 0.0091-0.0103 in.			COMP. DENSITY: 1.76-1.97 g/cm ³ VOID CONTENT: %			7781G/PR 381 Flexure [0] _{5s} 73/A, 220/A		
TEST METH	IOD:		MODULUS	CALCULATION	:	Interim, So		
ASTM D 79	0 Method 1		NA					
NORMALIZE	ED BY: Not norr	nalized						
Temperature Moisture Cor Equilibrium a	ntent(%) at T, RH	73 Ambient	220 Ambient					
n N	e Mean Minimum Maximum C.V. (%)	72 109 94.2 121 7.52	72 93.2 83.4 104 8.15					
F ^{flex} [(ksi) (B-value Distribution C ₁ C ₂	(1) ANOVA 8.92 3.33	(1) ANOVA 8.45 4.13					
1	No. Specimens No. Batches Data Class	21 5 Interim	14 4 Screening					

6.2.4 E-Glass 7781/EA9396 8-harness satin weave fabric

Material Description:

Material: E7781/EA9396

- Form: Eight harness satin fabric of style 7781, fiber areal weight of 295 g/m², dry fabric impregnated in a wet lay-up process, typical cured resin content of 25.9 to 30.4%, typical cured ply thickness of 0.008 inches.
- Processing: Vacuum Bag cure; 200°F, 25 inches Hg, 45 minutes

General Supplier Information:

- Fiber: Continuous E-glass fiber woven by Hexcel using F-16 (Volan-A) sizing. Typical tensile modulus is 10 x 10⁶ psi. Typical tensile strength is 500,000 psi.
- Matrix: EA9396 is a 200°F curing toughened epoxy resin with improved hot/wet properties. 75 minute pot life for 1 lb batch. This resin is a two part, unfilled version of EA 9394.

Maximum Short Term Service Temperature: Not determined from available data, but at least 150°F.

Typical applications: Aircraft repair

Data Analysis Summary:

- 1. This material was tested at fiber volumes that may be higher than what are typically used for repair. Data should be substantiated if used at lower fiber volumes.
- 2. Glass transition temperature (Tg) values were not reported because they were determined on neat resin using a non-standard method.
- 3. Wet properties are very low because of the glass and sizing combination.
- 4. Contrary to expectations, the fill tensile strengths and stiffnesses were greater than the warp properties.
- 5. Most tension failures were under the tabs, but were included since the strengths were consistent with correct failure modes.
- 6. Variability between batches is high. Documentation does not reveal a reason.
- 7. High end outliers for the following properties were discarded:
 - a. Transverse tension strain at 72°F ambient
 - b. Transverse tension modulus at -65°F ambient and 72°F wet
 - c. Transverse compression modulus at 72°F wet
- 8. Data are from publicly available report, Reference 4.2.27.
- 9. Test method dates were assumed from the testing dates rather than obtained from the data source.

6.2.4 E-Glass 7781/EA 9396 8-harness satin weave fabric *

MATERIAL:	E-Glass	E-Glass 7781/EA 9396 8-harness satin weave fabric							
FORM:		Dry E-Glass fabric impregnated with epoxy resin in a wet lay-up impregnation process.							
FIBER:		Burlington 7781	Dexter-Hysol EA 9396						
T _g (dry):	(1)	T _g (wet):	(1)	Tg METHOD:					
PROCESSING:		Bag Cure: 200	, ,	5 in. Hg.					

(1) See Data Analysis Note #2 in data set description

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

Date of fiber manufacture		Date of testing	11/88-5/91
Date of resin manufacture	8/88-10/88	Date of data submittal	3/98
Date of prepreg manufacture	NA	Date of analysis	8/98
Date of composite manufacture	11/88-5/91		

LAMINA PROPERTY SUMMARY

	72°F/A	-65°F/A	200°F/A	-65°F/W	72°F/W	200°F/W
Tension, 1-axis	IISI				IISI	
Tension, 2-axis	IISS	IISS	IISI	IISI	ISSI	IISI
Tension, 3-axis						
Compression, 1-axis	II-I				II-I	
Compression, 2-axis	II-I	II-I	SS-S	II-I	SS-S	II-I
Compression, 3-axis						
Shear, 12-plane	II	II	II	II	II	II
Shear, 23-plane						
Shear, 31-plane						

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	2.54		D 792
Resin Density	(g/cm ³)	1.14		
Composite Density	(g/cm ³)	1.91	1.88-1.96	D 792
Fiber Areal Weight	(g/m ²)	295		
Fiber Volume	(%)	54	51.2-56.9	D 2584
Ply Thickness	(in)	0.0085	0.0083-0.0087	

Nominal composite densities assume void content of 0%.

LAMINATE	PROPERTY	SUMMARY

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

- -----

* ALL	DOCUMENTATION F	PRESENTLY R	EQUIRED WE	RE NOT SUP	PLIED FOR THIS	MATERIAL.					
MATERI	MATERIAL: E-Glass 7781/EA 9396 8-harness satin weave fabric Table 6.2.4(a)										
	RESIN CONTENT: 25.9-27 FIBER VOLUME: 54.1-55		7.7 wt%COMP: DENSITY:5.8 %VOID CONTENT:			E-7781/	295-8HS EA 9396 n, 1-axis				
PLY THI	CKNESS: 0.0085	5-0.0086 in.				[0 _f] ₈					
TEST ME	ETHOD:		MODULUS	S CALCULAT	ION:	72/A,72/W Interim, Screening					
AST	M D 3039-76		Chord	between 100	0 and 3000με						
NORMAL	NORMALIZED BY: Specimen thickness and batch fiber areal weight to 50% fiber volume (0.0085 in. CPT)										
Tempera		7			72						
	Content (%) Im at T, RH	Amb	pient		(1) 95-100						
Source C		3	0	140,	30						
		Normalized	Measured	Normalized		Normalized	Measured				
	Mean	48.3	51.8	15.7	16.4						
	Minimum Maximum	45.5 54.1	48.0 57.9	13.4 17.0	13.6 18.3						
	C.V.(%)	4.77	5.17	6.44	7.74						
	B-value	(2)	(2)	(2)	(2)						
F_l^{tu}	Distribution	Nonpara.	Normal	Weibull	Weibull						
(ksi)	C ₁ C ₂	8 1.54	51.8 2.68	16.1 17.8	16.9 15.8						
	C_2	1.54	2.00	17.0	15.6						
	No. Specimens	15			15						
	No. Batches Data Class	3 Interim		3 Interim							
	Mean	3.39	3.62	3.16	3.30						
	Minimum	3.25	3.45	2.97	3.07						
	Maximum	3.48	3.77	3.30	3.52						
E ^t	C.V.(%)	2.18	2.51	2.64	3.93						
E_1^t	No. Chosinger		F		15						
(Msi)	No. Specimens No. Batches	15 3		15 3							
	Data Class	Inte		Interim							
	Mean	0.1		0	.084						
v_{12}^t	No. Specimens No. Batches	6	3		7 3						
	Data Class	Scree		Screening							
	Mean		17700		5100						
	Minimum		16400		4260						
	Maximum C.V.(%)		21800 7.72		5850 8.83						
	B-value		(2)		(2)						
ϵ_1^{tu}	Distribution		Nonpara.		Weibull						
(με)	C ₁		8		5290						
	C ₂		1.54		13.8						

Data Class (1) Unknown weight gain

No. Specimens

No. Batches

(2) Basis values are presented only for A and B data classes.

15

3

Interim

(3) Most failures were under the tabs, but were included since the strengths were consistent with correct failure modes.

15

3

Interim

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

MATERIAL: E-Glass 7781/EA 9396 8-harness satin weave fabric Table 6.2.4(b)										
FIBER V	OLUME: 54.0-5	27.7 wt% 66.5 % 5-0.0086 in.	COMP: DE VOID CON			EGI/Ep 295-8HS E-7781/EA 9396 Tension, 2-axis [0 _f] ₈ 72/A, -65/A, 200/A				
TEST ME	THOD:		MODULUS	S CALCULAT	FION:		72/A, -65/A, 200/A Interim, Screening			
AST	M D 3039-76		Chord	between 100	00 and 3000με					
NORMALIZED BY: Specimen thickness and batch fiber areal weight to 50% fiber volume (0.0085 in. CPT)										
	ture (°F) Content (%) ım at T, RH	72 Amb		A	-65 mbient	200 Ambient				
Source C		30	0		30		0			
		Normalized	Measured	Normalize		Normalized	Measured			
	Mean	50.5	54.3	67.2	71.9	42.4	45.2			
	Minimum	45.1	48.5	56.7 78.7	59.2 83.2	35.4	37.0			
	Maximum C.V.(%)	54.1 5.96	59.0 6.14	8.62	9.03	47.9 6.42	50.5 6.80			
F ₂ ^{tu}	B-value Distribution	(1) Weibull	(1) Weibull	(1) Weibull	(1) ANOVA	(1) Weibull	(1) Weibull			
(ksi)	C ₁ C ₂	51.8 19.5	55.7 20.5	69.7 11.2	74.7 36.8	43.6 15.4	46.5 18.3			
	No. Specimens No. Batches	15 3		15 3		15 3				
	Data Class Mean	Interim 3.41 3.67		Interim 3.89 4.15		Interim 3.31 3.53				
t	Minimum Maximum C.V.(%)	3.25 3.82 5.39	3.38 4.15 6.11	3.74 3.96 1.63	3.97 4.30 2.68	3.19 3.48 2.50	3.36 3.68 2.79			
E_2^t	0.1.(/0)	0.00	0.11	1.00	2.00	2.00	2.70			
(Msi)	No. Specimens No. Batches	15 3		14 3		15 3				
	Data Class	Interim		Screening		Interim				
v ^t ₂₁	Mean No. Specimens No. Batches	0.127 6 3		0.157 7 3		0.101 6 3				
	Data Class	Scree		Sc	reening	Scre	ening			
	Mean Minimum Maximum C.V.(%)		18200 15400 20300 8.37		24000 20500 26200 7.76		14400 9750 16500 11.6			
ε ^{tu} ₂	B-value Distribution		(1) Weibull		(1) Normal		(1) Weibull			
(με)	C ₁ C ₂		18900 15.7		24000 1870		15000 13.0			
	No. Specimens No. Batches	14		-	7 3	15 3				
<u> </u>	Data Class	Scree	ening	Sc	reening	Interim				

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

MATERIA	AL: E-Glas	Table	6.2.4(c)						
FIBER V	OLUME: 54.0-5	27.7 wt% COMP. DENSITY: 1.89-1.94 g/cm ² 56.5 % VOID CONTENT: 3.7-5.4 % 35-0.0086 in. 3.7-5.4 %		1.89-1.94 g/cm ³ 3.7-5.4 %	E-7781 Tensio	295-8HS /EA 9396 on, 2-axis 0 _f] ₈ 2/W, 200/W			
TEST ME	ETHOD:		MODULU	S CALCUL	ATION:		Screening		
AST	M D 3039-76		Chord	between 1	000 and 3000με				
NORMALIZED BY: Specimen thickness and batch fiber areal weight to 50% fiber volume (0.0085 in. CPT)									
	Content (%) Im at T, RH	(* 140, 9	85 1) 95-100 0	1	72 (1) 40, 95-100 30	(140, 9	00 1) 95-100 60		
		Normalized	Measured	Normali		Normalized	Measured		
	Mean Minimum Maximum C.V.(%)	19.7 14.4 23.0 10.9	21.2 15.5 25.2 12.3	16.3 14.6 18.8 8.11	15.7	12.6 11.2 14.3 6.17	13.5 11.9 15.9 7.04		
F ₂ ^{tu}	B-value Distribution	(2) Weibull	(2) Weibull	(2) ANOV	(2) A ANOVA	(2) Weibull	(2) Normal		
(ksi)	C ₁ C ₂	20.5 10.5	22.3 10.1	1.44 4.06		13.0 14.3	13.5 0.953		
	No. Specimens No. Batches Data Class		15 3 Interim		15 3 Interim		5 3 erim		
E ₂ ^t	Mean Minimum Maximum C.V.(%)	3.54 3.32 3.74 2.97	3.81 3.47 4.03 3.65	3.01 2.89 3.11 1.96	3.22 3.09 3.36	2.81 2.44 3.52 11.7	3.01 2.58 3.67 11.5		
(Msi)	No. Specimens No. Batches Data Class	:	5 3 erim	13 3 Screening		15 3 Interim			
v_{21}^t	Mean No. Specimens No. Batches Data Class	0.1	35	0.066 6 3 Screening		0.079 6 3 Screening			
	Mean Minimum Maximum C.V.(%)		6240 4000 7300 14.2	5420 3040 6510 19.2		4470 3360 4900 10.6			
ϵ_2^{tu}	B-value Distribution		(2) ANOVA		(2) ANOVA		(2) Nonpara.		
(με)	C ₁ C ₂		936 3.88		1120 4.58		8 1.54		
	No. Specimens No. Batches Data Class		5 3 erim		15 3 Interim	15 3 Interim			
L	Dala Class		21111	I			511111		

(1) Unknown weight gain

(2) Basis values are presented only for A and B data classes.

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

MATERIA		<u>IN PRESENTLY R</u> Blass 7781/EA 939	Table 6.2.4(d) EGI/Ep 295-8HS			
FIBER V	OLUME: 54.	6-30.4 wt% 1-55.8% 085-0.0086 in.	EGI/EP 293-6H3 E-7781/EA 9396 Compression, 1-axis [0 _{f]16} 72/A,72/W			
TEST ME	THOD:		MODULU	S CALCULATIC	DN:	Interim
AST	M D 3410B-87		Chord	between 1000	and 3000με	
NORMAL	LIZED BY: Spo	ecimen thickness a	and batch fiber	areal weight to	50% fiber volun	ne (0.0085 in. CPT)
	Content (%) m at T, RH	Aml	72 bient 30		-2.33 I)	
Source C	Jude	Normalized	Measured	Normalized	Measured	Normalized Measured
	Mean Minimum Maximum C.V.(%)	46.4 41.1 51.2 5.96	49.6 43.9 55.5 5.84	20.3 11.2 26.3 27.6	21.0 11.0 27.0 27.8	
F _l ^{cu}	B-value Distribution	(2) Weibull	(2) Weibull	(2) ANOVA	(2) ANOVA	
(ksi)	$\begin{array}{c} C_1 \\ C_2 \end{array}$	47.6 17.5	51.0 18.5	6.40 4.91	6.71 5.67	
	No. Specimens No. Batches Data Class		15 3 Interim		5 3 erim	
5 6	Mean Minimum Maximum C.V.(%)	3.45 2.96 3.86 6.24	3.68 3.17 4.11 5.98	3.06 2.56 3.77 10.1	3.18 2.56 3.85 10.1	
E_1^c		0.2.1	0.00			
(Msi)	No. Specimens No. Batches Data Class	:	15 3 erim		5 3 erim	
v_{12}^c	Mean No. Specimens No. Batches Data Class					
	Mean Minimum Maximum C.V.(%)		14700 11700 19600 12.8		7160 4160 10600 27.3	
ϵ_1^{cu}	B-value Distribution		(2) ANOVA		(2) ANOVA	
(με)	C ₁ C ₂		3.25 1940		4.72 2130	
	No. Specimens No. Batches Data Class		5 3 erim		5 3 erim	

Specimens conditioned at 140°F, 95-100% R.H for 68-180 days.
 Basis values are presented only for A and B data classes.

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATE	RIAL.
--	-------

	DOCUMENTATION							
MATERIA	AL: E-Glas	ss 7781/EA 939	6 8-harness sa	atin weave f	abric			6.2.4(e) 295-8HS
RESIN C	ESIN CONTENT: 27.6-30.4 wt% COMP: DENSITY: 1.89-1.93 g/cm ³							EA 9396
FIBER V		53.8 % VOID CONTENT: 4.0-5.0 %			Compression, 2-axis			
PLY THIC		3-0.0085 in.			0.0	/0		f]16
							-65/A, 72	2/A, 200/A
TEST ME	THOD:		MODULU	S CALCULA	ATION:		Interim,	Screening
AST	M D 3410B-87		Chord	between 1	000 and	3000με		
NORMAL	IZED BY: Speci	men thickness a	nd batch fiber	areal weigh	nt to 50%	6 fiber volu	me (0.0085 in.	CPT)
Temperat	ture (°E)	7	2		-65		20	0
	Content (%)	Amb			Ambient	ł	Amb	
	m at T, RH	,						
Source C		3	0		30		30	0
		Normalized	Measured	Normaliz	ed N	Measured	Normalized	Measured
	Mean	37.7	40.8	59.2		63.8	26.9	29.0
	Minimum	32.4	35.3	50.8		55.8	20.4	23.4
	Maximum	42.9	46.0	68.9		73.5	34.4	37.2
	C.V.(%)	8.72	7.60	9.72		9.58	16.1	15.1
	B-value	(1)	(1)	(1)		(1)	(1)	(1)
F ₂ ^{cu}	Distribution	Weibull	Weibull	ANOV	٩	ANOVA	ANOVA	ANOVA
-		20.2					E 07	
(ksi)	C ₁ C ₂	39.2 11.6	42.3 15.1	6.54 4.81		5.33 6.87	5.07 5.00	5.75 5.16
	C_2	11.0	15.1	4.01		0.07	5.00	5.10
	No. Specimens	1	5		15		1:	2
	No. Batches	3		3			3	
	Data Class		Interim		Interim		Screening	
	Mean	3.37	3.66	3.89		4.18	3.23	3.49
	Minimum	2.94	3.13	3.38		3.63	2.82	2.98
	Maximum	3.61	3.93	4.17		4.55	3.54	3.83
E_2^c	C.V.(%)	6.04	6.70	5.79		5.84	7.64	7.23
(Msi)	No. Specimens	1			15		1:	
	No. Batches Data Class	3 Inte		3 Interim		3 Screening		
	Mean			Interim		30100	5 mily	
	No. Specimens							
v_{21}^c	No. Batches							
v21	Data Class							
	Mean		11900			16800		8650
	Minimum		9020			13400		6550
	Maximum		17800			20800		12400
	C.V.(%)		20.1			11.8		19.5
	B-value		(1)			(1)		(1)
ϵ_2^{cu}	Distribution		Weibull			ANOVA		Weibull
(με)	C ₁		12900			5.06		9340
(pic)	C_2		5.04			2200		5.42
	No. Specimens	1	5		15		1:	
	No. Batches	3 Into			3 Intorim		3 Seree	
	Data Class	Inte	11111	I	Interim		Scree	riing

(1) Basis values are presented only for A and B data classes.

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

MATERI			s 7781/EA 939					Table 6.2.4(f) EGI/Ep 295-8HS	
FIBER V	CONTENT: OLUME: CKNESS:	51.2-5	0.4 wt% COMP: DENSITY: 1.89-1.93 g/cm ³ 3.8 % VOID CONTENT: 4.0-5.0 % 8-0.0085 in. VOID CONTENT: 4.0-5.0 %				E-7781/EA 9396 Compression, 2-axi [0 _f] ₁₆ -65/W, 72/W, 200/W		
TEST ME	ETHOD:			MODULUS	S CALCUL	ATION:	1		Screening
AST	M D 3410B-8	7		Chord	between 1	1000 an	d 3000µɛ		
NORMAL	LIZED BY:	Specin	nen thickness a	and batch fiber	areal weig		% fiber volur	ne (0.0085 in.	CPT)
	Content (%) Im at T, RH		-6 1.48 (1 3	-2.33 I)		72 1.48-2.3 (1) 30	33		
			Normalized	Measured	Normali		Measured	Normalized	Measured
	Mean Minimum Maximum C.V.(%)		43.5 36.4 52.5 9.58	46.5 38.6 56.1 10.0	22.0 16.8 26.4 13.3		23.6 18.9 27.7 12.8	13.4 11.3 17.2 14.8	14.2 11.8 18.3 14.8
F ₂ ^{cu}	B-value Distributior	ı	(2) Weibull	(2) Weibull	(2) ANOV	/A	(2) ANOVA	1.88 ANOVA	1.84 ANOVA
(ksi)	C ₁ C ₂		45.4 9.65	48.6 10.9	3.50 1.39		15.3 3.56	2.36 4.31	4.95 2.49
	No. Specimens No. Batches Data Class		1 S Inte	3 erim	10 2 Screening		18 3 Interim		
E ₂ ^c	Mean Minimum Maximum C.V.(%)		3.81 3.32 4.16 6.22	4.07 3.41 4.46 6.76	3.11 2.96 3.25 3.40	i	3.34 3.23 3.49 2.40	2.91 2.25 3.73 13.6	3.08 2.32 3.92 13.8
(Msi)	(Msi) No. Specimens No. Batches Data Class		1 S Inte	3	9 2 Screening		18 3 Interim		
v_{21}^c	Mean No. Specin No. Batche Data Class	nens es							
	Mean Minimum Maximum C.V.(%)			12400 9890 15700 13.3			7800 4570 9310 18.8		4540 2880 6890 22.9
ϵ_2^{cu}	B-value Distributior	ı		(2) Weibull			(2) Weibull		(2) Weibull
(με)	$C_1 \\ C_2$			13100 8.42			8330 7.91		4950 4.68
	No. Specimens No. Batches Data Class		1 C Inte			10 2 <u>Screeni</u>	ing	3	8 3 erim

Specimens conditioned at 140°F, 95-100% RH for 68-180 days.
 Basis values are presented only for A and B data classes.

RESIN CONTENT: 25.0-27.7 wt% 54.2-56.9 % D.0083-0.0085 in. COMP: DENSITY: 1.92 g/cm^3 VOID CONTENT: E-7781/FE 3336 Shear, 12-plane $I+/451/s$ TEST METHOD: ASTM D 3518-76 0.0083-0.0085 in. MODULUS CALCULATION: $I+/451/s$ $72/A$, 656/A, 200/A, -65 72 200 NORMALIZED BY: Not normalized MODULUS CALCULATION: Interim Interim Moisture Content (%) Maximum Ambient Ambient 1.52-2.32 1.52-2.32 1.52-2.32 Equilibrium at T, RH Maximum 3.0 30 30 30 30 30 Mean 11.5 16.9 7.11 8.52 5.49 2.73 Maximum 13.5 20.3 9.56 10.7 6.44 3.42 C.V.(%) 9.20 14.1 15.8 13.3 11.9 12.9 Fi2 Distribution Weibull Weibull Weibull Weibull Weibull Weibull (ksi) C1 12.0 17.9 7.59 9.01 5.76 2.890 C2	MATERI	AL: E-Glas	E-Glass 7781/EA 9396 8-harness satin weave fabric Ta							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	FIBER V	OLUME: 54.2-5	6.9 %			E-778 Shea [31/EA 9396 r, 12-plane +/-45 _f] _s			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TEST ME	ETHOD:		MODULU	S CALCULATI	ON:	-65/W,	72/W, 200/W		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	AST	M D 3518-76								
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	NORMAL	IZED BY: Not no	ormalized							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Ambient	Ambient	Ambient					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			30	30	30					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					7.11					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		C.V.(%)	9.20	14.1	15.8	13.3	11.9	12.9		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	F ₁₂ ^{su}			(2) Weibull		(2) Weibull	(2) Weibull			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		C ₁	12.0	17.9	7.59	9.01	5.76	2.890		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		C ₂	11.8	8.15	6.77	8.08	11.0	8.60		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						-	-			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	G_{12}^s									
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	(Msi)									
$\begin{array}{c c} & \text{Mean} & & \\ & \text{No. Specimens} \\ \gamma_{12}^{\text{s}} & \text{No. Batches} \end{array}$				-	-	-	-	-		
	Via	Mean No. Specimens								
		Data Class								

Specimens conditioned at 140°F, 95-100% RH for 111-117 days.
 Basis values are presented only for A and B data classes.

- 6.3 GLASS POLYESTER COMPOSITES
- 6.4 GLASS BISMALEIMIDE COMPOSITES
- 6.5 GLASS POLYIMIDE COMPOSITES
- 6.6 GLASS PHENOLIC COMPOSITES
- 6.7 GLASS SILICONE COMPOSITES
- 6.8 GLASS POLYBENZIMIDAZOLE COMPOSITES
- 6.9 GLASS PEEK COMPOSITES

This page intentionally left blank

CHAPTER 7 BORON FIBER COMPOSITES

- 7.1 INTRODUCTION
- 7.2 BORON EPOXY COMPOSITES
- 7.3 BORON POLYESTER COMPOSITES
- 7.4 BORON BISMALEIMIDE COMPOSITES
- 7.5 BORON POLYIMIDE COMPOSITES
- 7.6 BORON PHENOLIC COMPOSITES
- 7.7 BORON SILICON COMPOSITES
- 7.8 BORON POLYBENZIMIDAZOLE COMPOSITES
- 7.9 BORON PEEK COMPOSITES

Volume 2, Chapter 7 Boron Fiber Composites

This page intentionally left blank

CHAPTER 8 ALUMINA FIBER COMPOSITES

- 8.1 INTRODUCTION
- 8.2 ALUMINA EPOXY COMPOSITES
- 8.3 ALUMINA POLYESTER COMPOSITES
- 8.4 ALUMINA BISMALEIMIDE COMPOSITES
- 8.5 ALUMINA POLYIMIDE COMPOSITES
- 8.6 ALUMINA PHENOLIC COMPOSITES
- 8.7 ALUMINA SILICON COMPOSITES
- 8.8 ALUMINA POLYBENZIMIDAZOLE COMPOSITES
- 8.9 ALUMINA PEEK COMPOSITES

This page intentionally left blank

CHAPTER 9 SILICON CARBIDE FIBER COMPOSITES

- 9.1 INTRODUCTION
- 9.2 SILICON CARBIDE EPOXY COMPOSITES
- 9.3 SILICON CARBIDE POLYESTER COMPOSITES
- 9.4 SILICON CARBIDE BISMALEIMIDE COMPOSITES
- 9.5 SILICON CARBIDE POLYIMIDE COMPOSITES
- 9.6 SILICON CARBIDE PHENOLIC COMPOSITES
- 9.7 SILICON CARBIDE SILICON COMPOSITES
- 9.8 SILICON CARBIDE POLYBENZIMIDAZOLE COMPOSITES
- 9.9 SILICON CARBIDE PEEK COMPOSITES

This page intentionally left blank

MIL-HDBK-17-2F

Volume 2, Chapter 10 Quartz Fiber Composites

CHAPTER 10 QUARTZ FIBER COMPOSITES

10.1 INTRODUCTION

10.2 QUARTZ - EPOXY COMPOSITES

10.3 QUARTZ - POLYESTER COMPOSITES

10.4 QUARTZ - BISMALEIMIDE COMPOSITES

10.4.1 Astroquartz – II/F650 8-harness satin weave

10.4.1 Astroquartz II/F650 8-harness satin weave fabric

Material Description:

Material: Astroquartz II/F650

- Form: 8 harness satin weave fabric, fiber areal weight of 285 g/m², typical cured resin content of 37%, typical cured ply thickness of 0.010 inches.
- Processing: Autoclave cure; 375°F, 85 psi for 4 hours. Postcure at 475°F for 4 hours

General Supplier Information:

- Fiber: Astroquartz II fiber is a continuous, high strength, low modulus ceramic fiber made of pure fused silica. Typical tensile modulus is 10 x 10⁶ psi. Typical tensile strength is 500,000 psi.
- Matrix: F650 is a 350°F curing bismaleimide resin. It will retain light tack for several weeks at 70°F.

Maximum Short Term Service Temperature: 500°F (dry), 350°F (wet)

Typical applications: Primary and secondary structural applications, fire containment structures, radomes or any application where high strength and/or electrical properties are required.

Volume 2, Chapter 10 Quartz Fiber Composites

10.4.1 Astroquartz II/F650 8-harness satin weave*

MATERIAL:	Astroquartz II/F650 8-harness sa	Q/BMI 285-8HSI Astroquartz II/F650 Summary						
FORM:	Hexcel AQII581/F650 8-harness							
FIBER:	J.P. Stevens Astroquartz II	MATRIX: Hexcel F650						
T _g (dry):	600°F T _g (wet):	Tg METHOD:						
PROCESSING:	Autoclave cure: 375°F, 4 hours, 85 psig; Postcure: 475°F, 4 hours							

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

Date of fiber manufacture	Date of testing	
Date of resin manufacture	Date of data submittal	4/89
Date of prepreg manufacture	Date of analysis	1/93
Date of composite manufacture		

	75°F/A	450°F/A			
Tension, 1-axis					
Tension, 2-axis					
Tension, 3-axis					
Compression, 1-axis					
Compression, 2-axis					
Compression, 3-axis					
Shear, 12-plane					
Shear, 23-plane					
Shear, 31-plane					
SB strength, 31-plane	S	S			

LAMINA PROPERTY SUMMARY

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

Volume 2, Chapter 10 Quartz Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	2.17		
Resin Density	(g/cm ³)	1.27		
Composite Density	(g/cm ³)	1.78	1.73	
Fiber Areal Weight	(g/m ²)	285		
Fiber Volume	(%)	57	51	
Ply Thickness	(in)	0.0100	0.010	

LAMINATE PROPERTY SUMMARY

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

MATERIAL:	Astroquartz II/F650	8-harness satir	n weave fabric		Table 10.4.1(a) Q/BMI 285-8HS Astroquartz II/F650 SBS, 31-plane [0 _f]12 75/A, 450/A								
FIBER VOLUME:	37 wt% 51 % 0.010 in.	COMP: D VOID CO		3 g/cm ³									
TEST METHOD:		MODULU	S CALCULATIO	ON:		ening							
ASTM D 2344													
NORMALIZED BY:													
Temperature (°F)	75	450											
Moisture Content (%) Equilibrium at T, RH	ambient	ambient											
Source Code	21	21											
Mean Minimum	6.41 6.31	6.56 6.43											
Maximum	6.50	6.72											
C.V.(%)	1.06	1.69											
B-value	(1)	(1)											
F ^{sbs} ₃₁ Distribution	Normal	Normal											
(ksi) C ₁	6.41	6.56											
C ₂	0.068	0.111											
No. Specimens	5 5	5											
No. Batches	1	1											
Data Class	Screening	Screening											

(1) Short beam strength test data are approved for Screening Data Class only.

- **10.5 QUARTZ POLYIMIDE COMPOSITES**
- **10.6 QUARTZ PHENOLIC COMPOSITES**
- **10.7 QUARTZ SILICONE COMPOSITES**
- 10.8 QUARTZ POLYBENZIMIDAZOLE COMPOSITES
- **10.9 QUARTZ PEEK COMPOSITE**

APPENDIX A1. MIL-HDBK-17A DATA

A1.1 GENERAL INFORMATION

The data on polymer matrix composite materials which were presented in MIL-HDBK-17A, dated January 1971, are presented in this appendix. MIL-HDBK-17A has been superseded so these data are presented here so they can be Referenced in a current publication. However, these data do not meet the data requirements in Volume 1. The materials which were included in MIL-HDBK-17A are listed in Table A1. Of the sixteen materials, six are still available, five are no longer available, and the availability of the other five materials could not be determined. The data from the six available materials are provided in this appendix. The data from the remaining materials may be added as availability of the material or usefulness of the data is determined. Note that Narmco 5505 has been licensed to AVCO and those data are presented herein as AVCO 5505.

TABLE A1 Materials from MIL-HDBK-17A.

Available:
U.S. Polymeric E-720E/7781 (ECDE-1/0-550) Fiberglass Epoxy
Hexcel F-161/7743(550) Fiberglass Epoxy
Hexcel F-161/7781(ECDE-1/0-550) Fiberglass Epoxy
Narmco N588/7781 (ECDE-1/0-550) Fiberglass Epoxy
Narmco 506/7781 (ECDE-1/0-A1100) Fiberglass Phenolic
AVCO 5505 Boron Epoxy
Not available:
U.S. Polymeric E-779/7743 (Volan) Fiberglass Epoxy
3M XP251S Fiberglass Epoxy
U.S. Polymeric S-860/1581 (ECG-1/2-112) Neutral pH Fiberglass Silicone
U.S. Polymeric P670A/7781 (ECDE-1/0) Fiberglass Modified DAP Polyester
SP272 Boron Epoxy
Availability unknown:
Bloomingdale BP915/7781 (ECDE-1/0-550) Fiberglass Epoxy
Bloomingdale BP911/7781 (ECDE-1/0 Volan) Fiberglass Epoxy
Cordo E293/7781 (ECDE-1/0-550) Fiberglass Epoxy
Styrene-Alkyd Polyester/7781 Fiberglass
Cordo IFRR/7781 (ECDE-1/0) Fiberglass Modified DAP Polyester

The Table and Figure numbers used in this appendix are similar to those in MIL-HDBK-17A. The chapter identification has been changed from 4 to A1 but the rest of all Figure and Table numbers has not been changed. For example, Table A1.40 is the same as Table 4.40 in MIL-HDBK-17A. The MIL-HDBK-17A text describing the test program and methods is reproduced in Sections A1.2 through A1.4.

A1.2 INTRODUCTION

The laminate properties presented in this chapter have been generated in test programs conducted at the U.S. Forest Products Laboratory and elsewhere (Reference A1.2).¹ Properties are given for fiberglass with epoxy, phenolic, silicone and polyester resins and for boron with epoxy. Additional information on these and other material combinations will be issued as supplements or revisions of the present handbook edition.

A1.3 HANDBOOK TEST PROGRAM

A1.3.1 Objectives

The objectives of the handbook test program are to obtain statistically significant data for materials currently in use and to determine the degree of reproducibility attained in their fabrication. A minimum requirement is that test results include data from three sets of panels which are representative of the manufacturing procedures employed by three different fabricators. The properties listed in the charts and Tables of this chapter represent test results from only one set of panels for each material system. Properties are therefore not given minimum values and are considered to be "typical" for each material. When the minimum number of tests has been completed for a material, its properties will be assigned values on a B-basis; that is, the value above which 90 percent of the population of values is expected to fall with a confidence of 95 percent.

A1.3.2 Preimpregnated materials

All test panels are fabricated from prepregs. Emphasis is placed on materials for use as facings in sandwich type structures. The prepregs for facings are normally processed to conform with two methods of sandwich fabrication. These are the laminate grades for two-step sandwich constructions and the controlled flow adhesive grades for one-step sandwich constructions. Only laminates simulating precured facings, that is, for use in two-step sandwiches, have been subjected to the narrow coupon tests listed in this chapter. The controlled flow adhesive prepregs are best tested as sandwich panels, and such testing is not at present included in the handbook program.

The prepreg materials comply with the specifications established by the individual fabricators. In general, the materials are autoclave molding grades with flows controlled to attain minimum bleedout and optimum bonding of the plies. When possible handling characteristics are specified consistent with the objectives of collimated plies in the laminate and the retention of fiber orientation during lay-up and cure.

Imposed tolerances on the gravimetric resin content of the prepregs are dependent on the type of reinforcement. For bidirectional woven broadgoods such as style 7781 fabric, the resin fraction is specified as not varying by more than two percent from the assigned devolatilized resin content. For directionally woven broadgoods such as style 7743 fabric, and nonwoven parallel fiber tapes such as XP251S, variation from the assigned devolatilized resin content is not to exceed three percent.

A1.3.3 Test panels

A minimum size of the test panels has been established as two feet parallel to the warp direction by three feet parallel to the width for woven fabrics. For the non-woven laminates, including unidirectional, crossplied and quasi-isotropic configurations, the three foot dimension is parallel to the fiber direction in the outer plies.

¹Exceptions are the data for fiberglass-polyester laminates, taken from earlier sources, and the data for boron-epoxy panels which were compiled under special contract and published separately (Reference A1.2).

Volume 2, Appendix A1

It is desirable that the test laminates be fabricated so that fiber alignment and orthotropy are maintained and that they are symmetrically balanced. Such conditions are generally attained in the test panels and they are designated in the following data summary Tables as balanced and parallel. One set of panels (Table A1.1) is not balanced. In this case the laminates are parallel plied.

A1.3.4 Test procedures

Conventional uniaxial tests are conducted at constant crosshead rates. The direction parallel to the warp of woven fabrics is designated as the 0° or 1-direction. The direction perpendicular to the 0° direction is designated as the 90° or 2-direction. For non-woven unidirectional laminates, the 0° direction corresponds to the fiber direction. For crossplied and quasi-isotropic laminates, the 0° direction corresponds to the fiber direction in the outer plies.

A1.3.4.1 Tensile tests

Tensile tests for woven fabric laminates have been conducted initially using the method of ASTM D 638 and Type I specimens (Reference A1.3.4.1(a)). Later tests are conducted with a modified specimen (Reference A1.2) and the method is designated as MIL-HDBK-17 tensile test. Tab ended specimens are used to test the 0° tensile properties of the non-woven unidirectional laminates (Reference A1.3.4.1(b)).

A1.3.4.2 Compression tests

Compression tests have been conducted with the end clamped and jig stabilized ASTM D 695 specimen (Reference A1.3.4.2) and with the MIL-HDBK-17 compression specimen (Reference A1.2) in which the specimen and fixture have been modified.

A1.3.4.3 Shear tests

The picture frame method (Reference A1.2) has been used to determine the 0° - 90° shear properties of one material system at three resin fractions (Figure A1.6.3). In these tests it is assumed that 88 percent of the load is reacted by the specimen, while the pins in the fixture react the remainder. The other materials are tested by a modified rail shear method (Reference A1.3.4.3).

A1.3.4.4 Interlaminar shear

Interlaminar shear properties are determined by the short beam test method (Reference A1.3.4.1(b)), or by the method of ASTM D 2733-68T when indicated (Reference A1.3.4.4).

A1.3.4.5 Flexural tests

Flexural properties are determined by the method of ASTM D 790 (Reference A1.3.4.5).

A1.3.4.6 Bearing strength

Bearing strengths are determined by the method of ASTM D 953 (Reference A1.3.4.6).

A1.3.5 Dry conditioning

Specimens are dry conditioned by allowing them to attain equilibrium at 70°F to 75°F and 45 percent to 55 percent relative humidity for a minimum of ten days. When tested at other than room temperature, the dry conditioned specimens are soaked at the test temperature for one-half hour prior to applying load.

A1.3.6 Wet conditioning

Specimens are wet conditioned at 125°F and 95 percent to 100 percent relative humidity for 1000 hours (42 days). When tested at temperatures below freezing, the wet conditioned specimens are cycled four times from the wet condition at 125°F to the sub-freezing test temperature; the dwell time at each temperature being one-half hour. Wet specimens tested at 160°F are soaked for one-half hour at this temperature immediately prior to testing. Some materials are shown as being tested at 220°F after wet conditioning. Such testing has been discontinued since these results appear inconclusive.

A1.3.7 Test schedule

The 0° and 90° tension and compression properties are determined at three Reference temperatures, $65^{\circ}F$, $70^{\circ}F$ - $75^{\circ}F$ and $160^{\circ}F$, for both dry and wet conditioned specimens. Dry conditioned specimens are tested at maximum temperature for those materials which are potentially serviceable at elevated temperatures. Ten test results are obtained for the stress-strain relations at each of these conditions. Tests at intermediate temperatures are conducted to verify property changes, in which cases five specimens are tested. Ten test results are also required for the 0° - 90° shear at -65°F, $70^{\circ}F$ - $75^{\circ}F$, and $160^{\circ}F$ in the dry condition. Five tests are conducted at $70^{\circ}F$ - $75^{\circ}F$ to determine the stress-strain relations for Poisson's ratio. Flexure, bearing and interlaminar shear are determined in the 0° direction and dry condition at -65°F, $70^{\circ}F$ - $75^{\circ}F$ and $160^{\circ}F$. Five specimens are tested for each temperature.

A1.4 DATA PRESENTATION

Uniaxial tension, compression and shear are shown as stress-strain relations at each temperature and the properties are summarized in tabular form. Flexural, bearing and interlaminar shear properties are listed in summary Tables. Poisson's ratio is shown as the response of the 0° elongation and 90° contraction to the applied tensile stress.

When ten or more results are available at a test condition, average values and the associated standard deviations are given in the Tables. Stress-strain relations are plotted as an average curve and a plot of the average minus three times the standard deviation is also shown. When five to nine results are obtained from a test condition, average, maximum, and minimum values and curves are shown.

A1.4.1 Epoxy-fiberglass laminates

All data on fiberglass-epoxy systems are results obtained from the handbook test program. Properties are summarized in Tables A1.1 through A1.8. Detailed data are shown in Figures A1.1.1(a) through A1.8.5. [Four of the nine materials are known to be available.]

A1.4.2 Phenolic-fiberglass laminates

Handbook tested properties are summarized in Table A1.40 and Figures A1.40.1(a) through A1.40.5 for one fiberglass-phenolic system. [This material is available.]

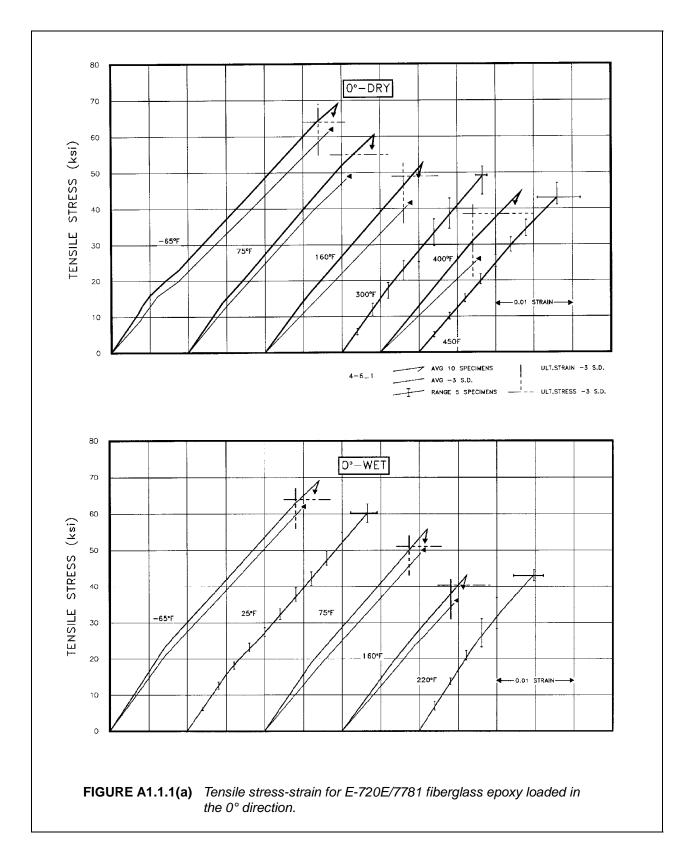
A1.4.3 Silicone-fiberglass laminates

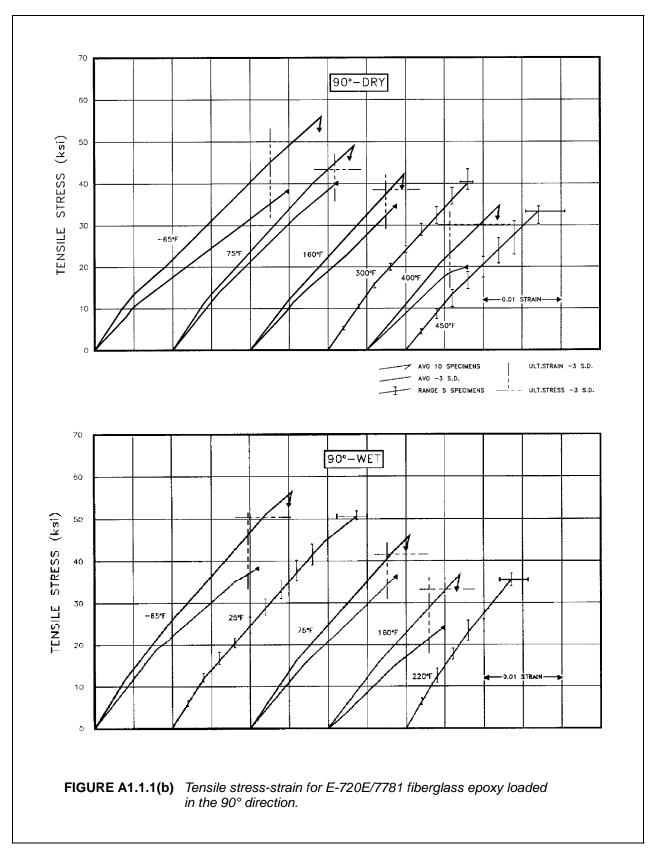
Partial handbook test results were listed in MIL-HDBK-17A for one fiberglass-silicone system. [This material is not available]

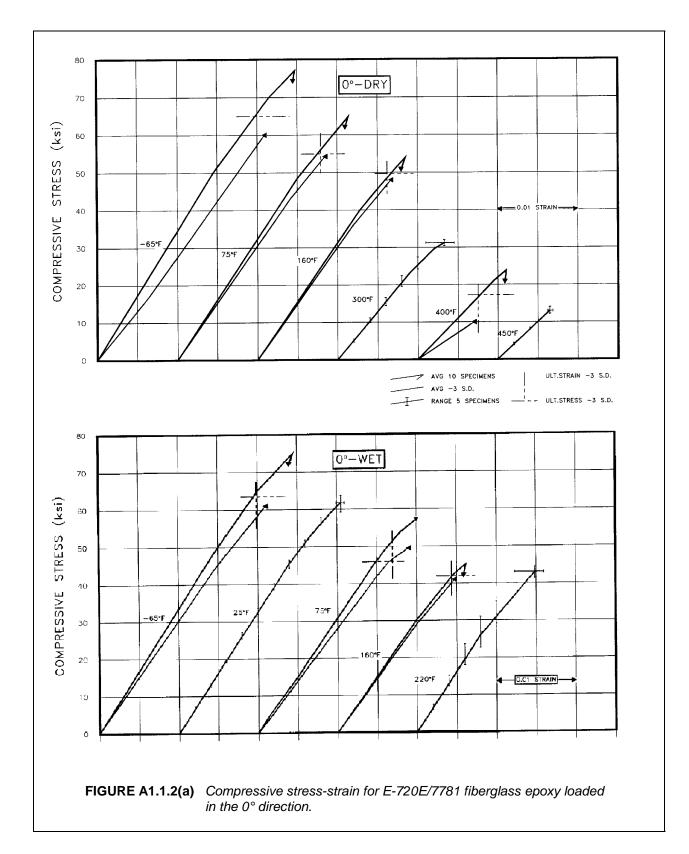
A1.4.4 Polyester-fiberglass laminates

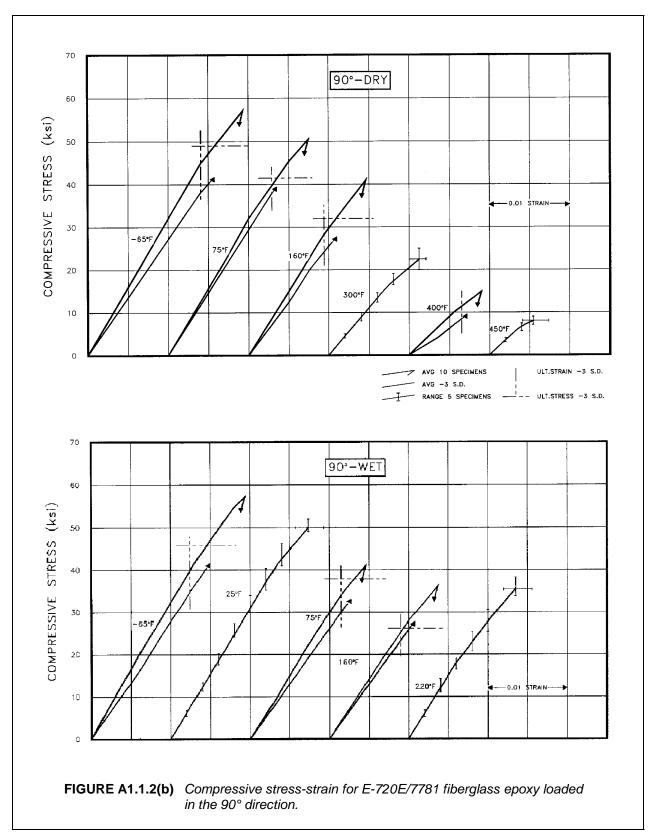
Previous data for fiberglass-polyester laminates were listed in MIL-HDBK-17A. [None of these materials are known to be available.]

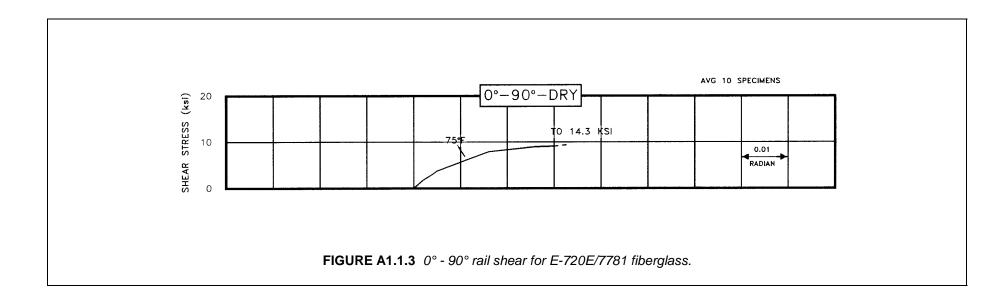
A1.4.5 Boron-epoxy laminates

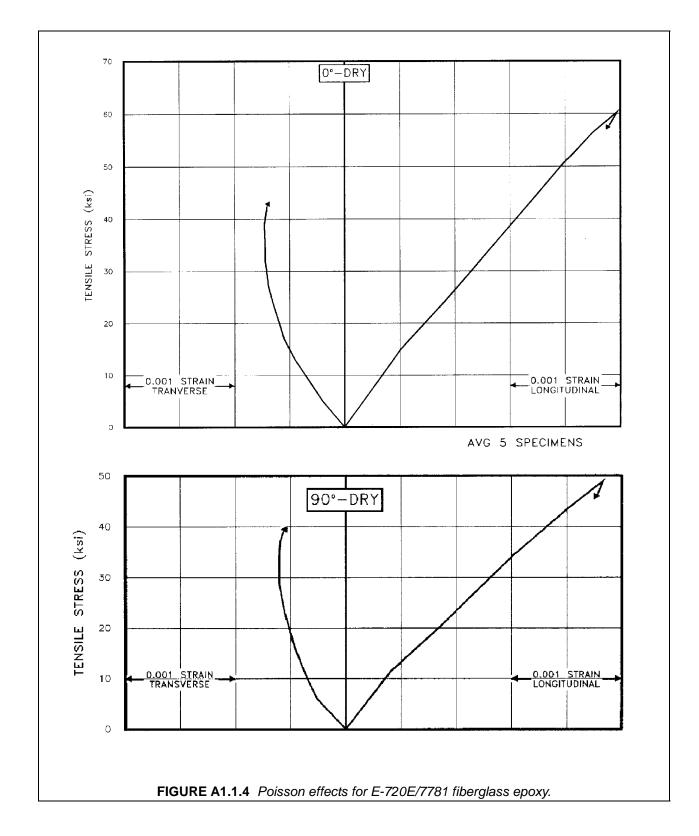

Data on two boron-epoxy systems have been abstracted from the literature (Reference A1.4.5) and are presented in Tables A1.110 and A1.111 and in Figures A1.110.1(a) through A1.111.3. [One of these materials is available.]

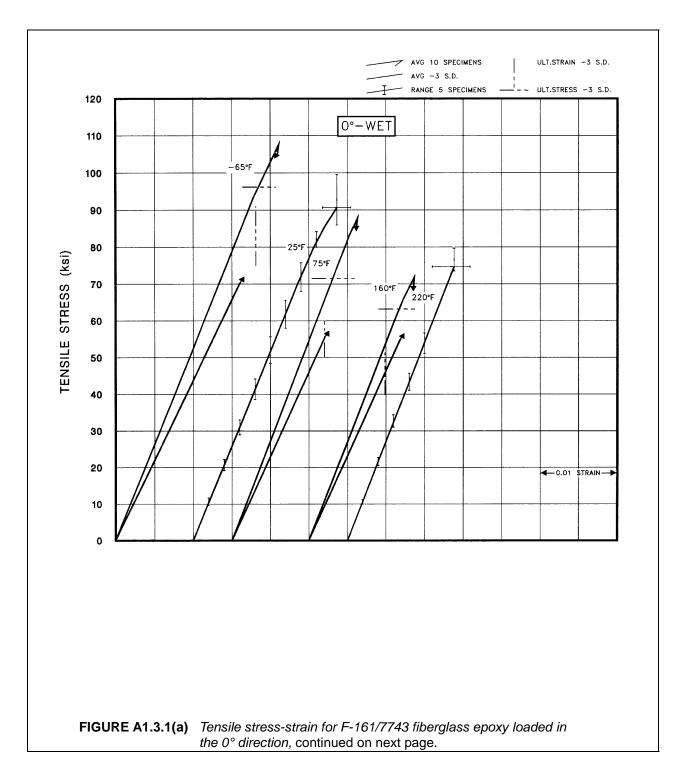

The laminate thickness is controlled by the number of plies in the construction and the desired resin content. In general, the thickness of woven fabric laminates is maintained at eight plies, except for low resin content laminates which may require as many as ten plies. Nonwoven laminate monolayers are constructed with six plies to reduce the shear lag apparent in testing, and eight plies for the crossplied and quasi-isotropic panels.

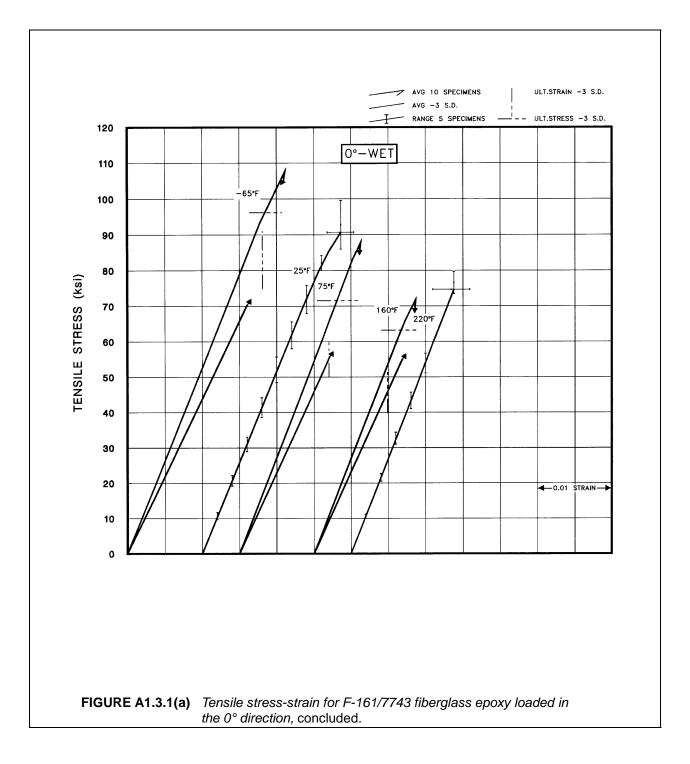

Volume 2, Appendix A1

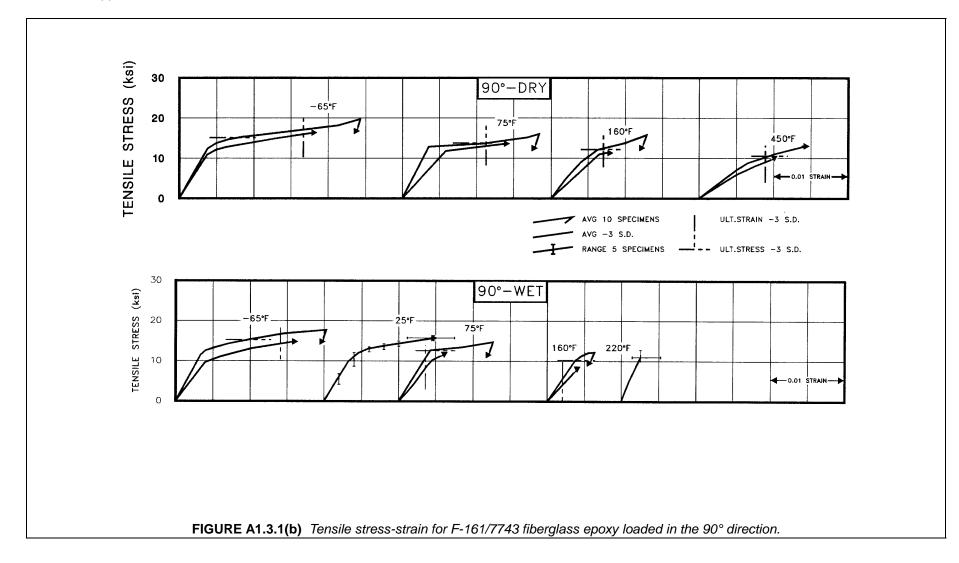

		Lay-up:		Vacuum:		Pressur		Bleedout		Cure:	5005	Postcure		Plies:		
Fabrication		Para Waisht D		Nor			65 PSI		Vertical	2 hr/3			400°F		8	
Physical Properties		Weight Pe	esin:	Avg.					Avg. Percent Voids:			Avg. Thickness: 0.082 inches				
Filysical Flopenies		Tension:	Com	pression:	1.78 ession: Shear:				2.0 Flexure: Bea							
Test Methods		ASTM D	638 TYP			IL-HDBK-17 Rail			ASTM D 790			earing: ASTM D 953		Interlaminar Shear: Short Beam		
Temperature			-65			1L-HUBK-17 Rail 75°F						0°F		400°F		
Condition		Dr	V	We	et		Dry	W	/et	Dr	Υ .	W		C	Dry	
		Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD	
Tension																
ultimate stress, ksi	0°	69.2	1.6	69.1	1.7	60.		55.7	1.5		1.0		0.8			
	90°	56.0	2.0	56.5	2.0	49.		45.9		42.3	1.2		1.1			
ultimate strain, %	0° 90°	2.93 2.92	0.08 0.22	2.70 2.54	0.11 0.19	2.4 2.3		2.12 2.04			0.08 0.08		0.06 0.13			
proportional limit, ksi	90° 0°	2.92	0.22	2.54	0.19	2.3	3 0.09	2.04	0.09	1.90	0.08	1.70	0.13	1.72	0.2	
	90°															
initial modulus, 10 ⁶ psi	0°	3.30		3.38		3.1	2	3.12		2.95		2.76		2.60		
•	90°	2.90		3.02		2.8	2	2.78		2.50		2.65		2.30)	
secondary modulus, 10 ⁶ psi	0°	2.30		2.85		2.4		2.50		2.46		2.37				
	90°	1.90		1.74		2.0	5	2.19		2.01		1.97				
Compression				75.0	0.7					- 4 0		10.0				
ultimate stress, ksi	0°	77.1	4.0	75.0	3.7 2.7	64.		57.3		54.0	1.4		1.4			
ultimate strain, %	90° 0°	57.2 2.48	2.7 0.16	53.9 2.44	2.7 0.15	50. 2.1		45.2 1.99		40.8 1.86	2.9 0.08		3.1 0.06			
ditimate strain, 70	90°	1.93	0.16	1.81	0.13	1.7		1.58		1.46	0.00	-	0.00			
proportional limit, ksi	0°	1.00	0.10	1.01	0.10		0	1.00	0.11	1.10	0.11	1.07	0.10	0.01	0.0	
	90°															
initial modulus, 10 ⁶ psi	0°	3.50		3.45		3.2		3.10		3.15		3.03		2.45		
	90°	3.20		3.26		3.2	1	3.03		2.99		2.85		1.85	j	
Shear	00.000	475								44.0						
ultimate stress, ksi	0°-90°	17.5				14.	3 0.6			11.2						
	± 45°							700					160° D			
	Avg		-65°F Dry Max N		Mir	n Avg			75°F Dry Max			Avg		ry	Min	
Flexure		Avg		Wax	IVIII	1	Avg	IVI	ах	Min		٠vg	Max		IVIIII	
ultimate stress. ksi	0°	1	15.6	119.4		111.5	91	7	93.4	90	0.3	69.4		71.1	67.	
proportional limit, ksi	0°		88.1	100.7		77.5	32		36.2		0.8	56.2		62.8	49.	
initial modulus, 10 ⁶ psi	0°		2.87	2.91		2.74	3.2		3.36		03	2.81		2.87	2.7	
Bearing					1											
ultimate stress, ksi	0°		74.1	78.4		70.7	60		64.4		3.2	50.0		53.0	47	
stress at 4% elong., ksi	0°		32.1	34.8		29.1	23	.9	34.2	20	0.1	18.1		21.5	15	
Interlaminar Shear				-					0.07		70					
ultimate stress, ksi	0°		7.09	7.36		6.80	5.9	90	6.07	5.	72	6.05		6.16	5.9	

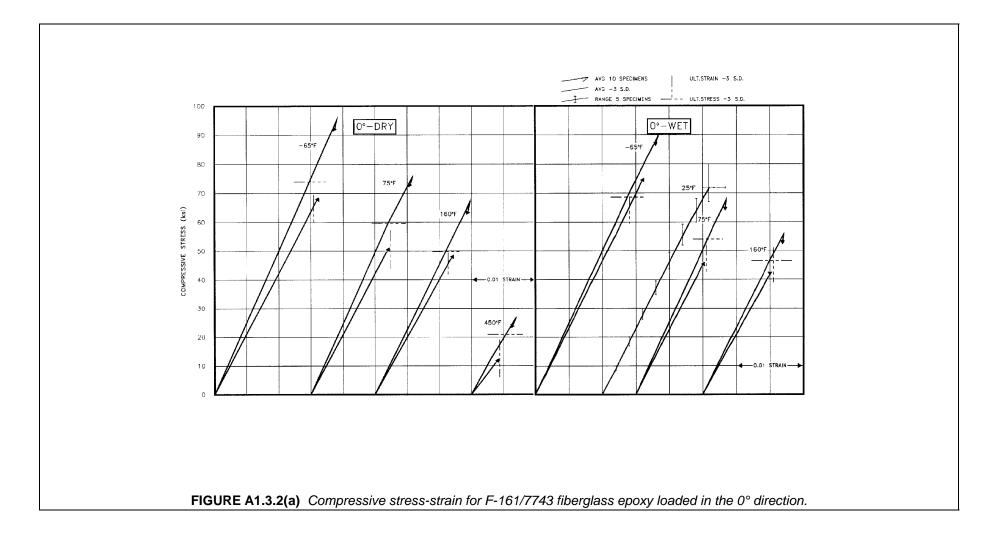

 TABLE A1.1
 Summary of Mechanical Properties of U.S. Polymeric E-720E/7781 (ECDE-1/0-550) Fiberglass Epoxy

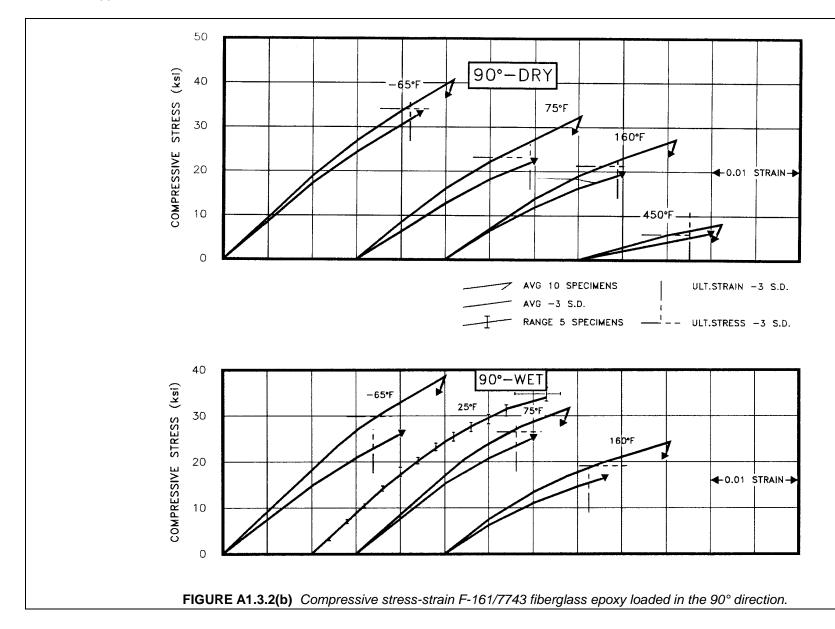


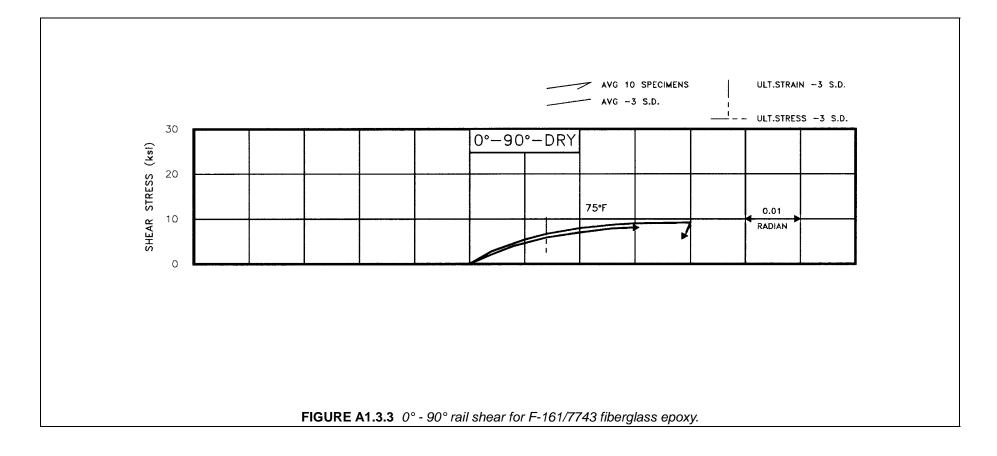

This page intentionally left blank

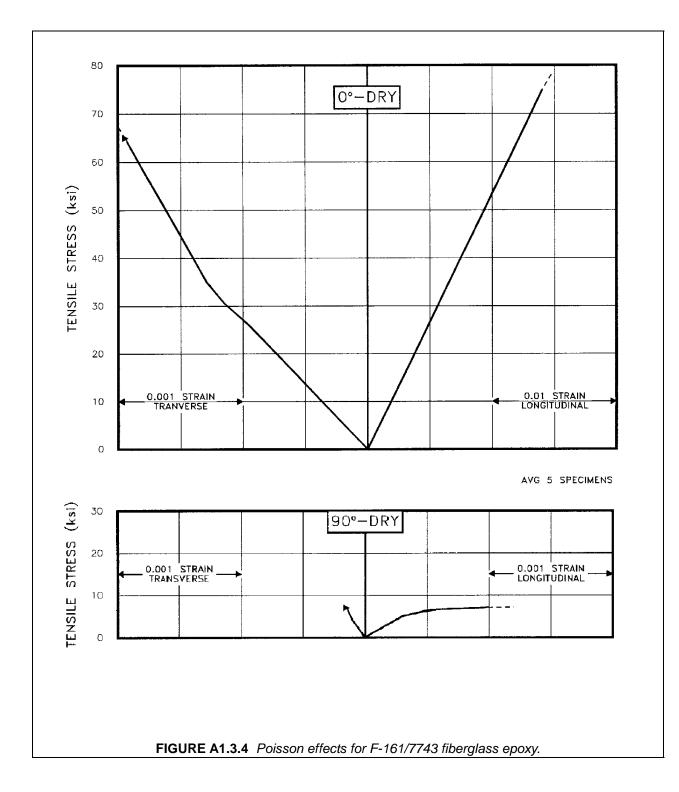

Volume 2, Appendix A1

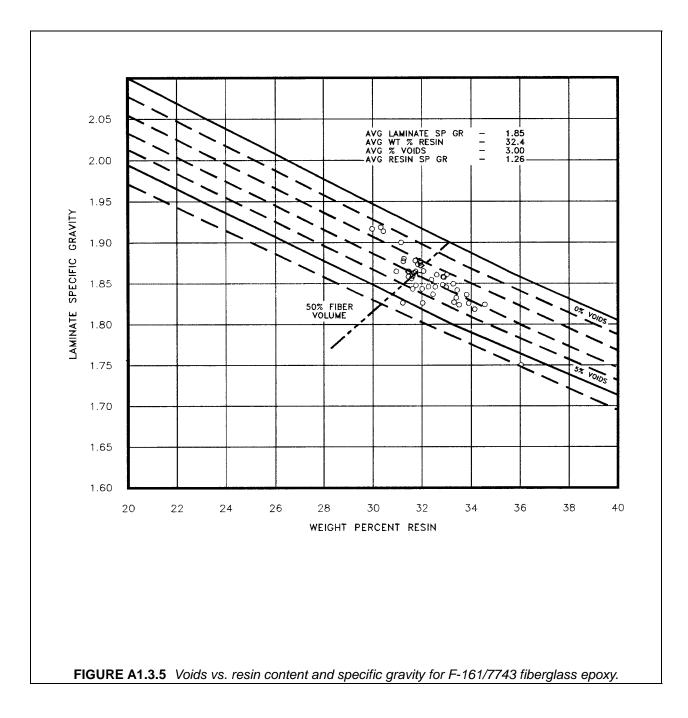

[IAD	1	, ,						, ,	erglass Ep		Desta				
		Lay-up:		Vacuum:		Pressure		Bleedou		Cure:	00 -	Postcure		Plies:		
Fabrication		Balanc		. 14 ps		35 p		Pinche	ed Edge	2 hr/35		2 hr/3		8		
Discription Description				ent Resin:		Avg. Specific			Avg. Per	cent Voids	:	Avg		ickness:		
Physical Properties			$v_{f} = 0.4$			1.85	01			3.0		0.086 inches				
T (N (I))		Tension:							exure: Bearing:			Interlaminar Shear:				
Test Methods		ASTM-D6			IL-HDBK	-17	Rail		STM-D79)		A-D953 Short Beam				
Temperature			-65			75°F						60°F			400°F	
Condition		Dr	,	W			Dry		Vet	Dr			/et	Dry		
		Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD	
Tension																
ultimate stress, ksi	0°	111.3	1.12	107.3	3.60	95.5		87.3			4.05			74.		
	90°	9.84	0.78	9.42	0.59	8.15		7.2			0.18			6.5		
ultimate strain, %	0°	2.10	0.31	2.11	0.10	1.88		1.72			0.15			1.6		
	90°	2.43	0.25	2.03	0.21	1.82		1.20			0.19			1.4		
proportional limit, ksi	0°	86.2		87.8		74.7		81.		64.0		65.4		61.		
	90°	5.6		5.0		5.2		4.8		5.0		5.0		3.		
initial modulus, 10 ⁶ psi	0°	5.42		5.35		5.30		5.5		5.36		5.47		4.5		
	90°	1.61		1.73		1.73	-	1.4	1	1.11		1.30		0.7	4	
secondary modulus, 10 ⁶ psi	0°					5.15										
	90°					0.09	1									
Compression	•	05.0	7.40		7.0			o 					0.00			
ultimate stress, ksi	0°		7.42	89.7	7.0	75.9		67.4			5.53			26.		
	90°	40.3	1.93	37.6	2.93			30.4			1.93			8.		
ultimate strain, %	0°	1.90	0.11	1.83	0.14	1.58		1.3		1.47	0.08			0.6		
a man and a set that to be t	90°	2.57	0.16		0.25	2.51					0.22			1.6		
proportional limit, ksi	0°	83.0		70.0		52.2		49.8		55.6		40.8		20.	0	
initial marketure 40 ⁶ nai	90° 0°	18.1 5.02		15.0		11.9		10.0		9.2		8.2			0	
initial modulus, 10 ⁶ psi	90°	5.02 1.91		4.98 1.88		4.96 1.65		5.09 1.7		4.59 1.46		4.66 1.37		4.1	2	
Shear	90	1.91		1.00		1.00		1.7	1	1.40		1.37				
ultimate stress, ksi	0°-90°	12.5				0.0	2 0.2			7.7						
ultimate stress, ksi		12.5				9.2	2 0.2			1.1						
	± 45°															
		-65°F Dry					75°F Dry						60° Dry			
		Avg	Avg Max		Mir	Min Av		vg Max		Min		Avg	Max		Min	
Flexure																
ultimate stress, ksi	0°		03.0	210.0		196.0	160		163.0		155.0	138.0		42.0	135.0	
proportional limit, ksi	0°		53.0	158.0		147.0	127		139.0	116.0		116.0		18.0	112.0	
initial modulus, 10 ⁶ psi	0°		5.71	5.80	1	5.63	5.1	8	5.27	5.	10	5.43	ł	5.46	5.32	
Bearing											_					
ultimate stress, ksi	0°		79.4	90.2		64.8	58		63.2	52.7		53.7		57.5	50.6	
stress at 4% elong., ksi	0°		37.9	45.6		31.5	23	.0	27.1	19	9.5	21.9		23.6	20.5	
Interlaminar Shear																
ultimate stress, ksi	0°		9.55	10.15		8.72	9.3	35	9.55	9.	17	8.31	8	8.65	8.02	

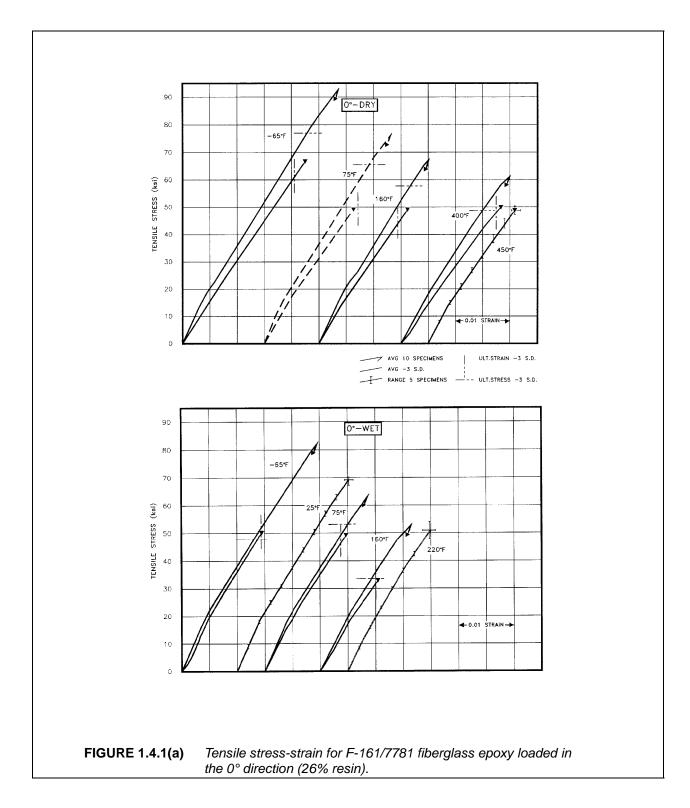

 TABLE A1.3
 Summary of Mechanical Properties of Hexcel F-161/7743(550)
 Fiberglass Epoxy.

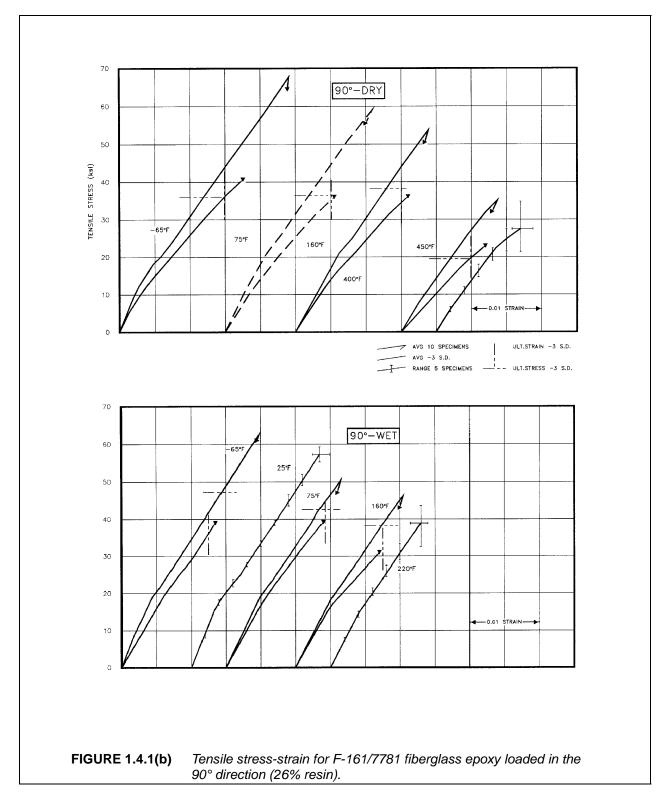

MIL-HDBK-17-2F

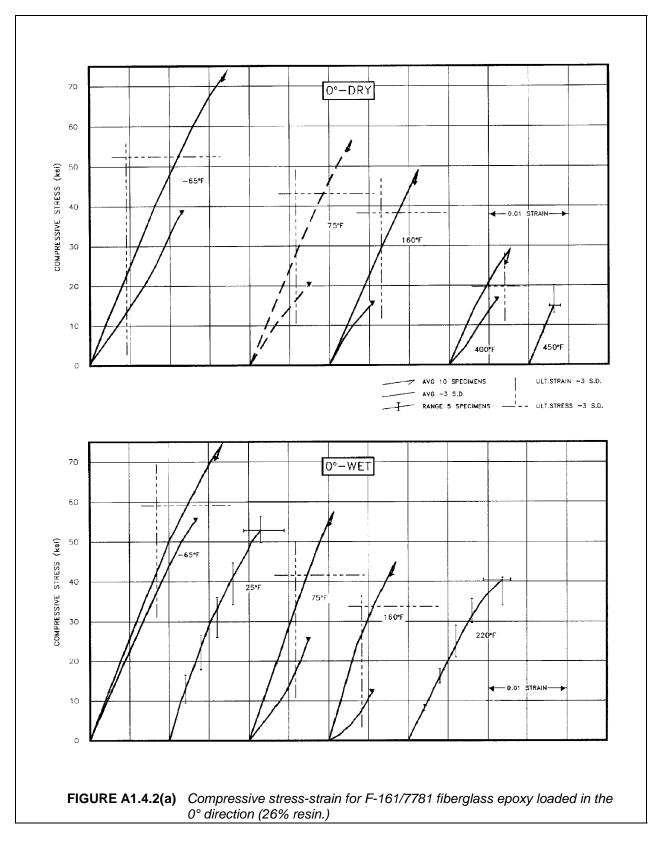


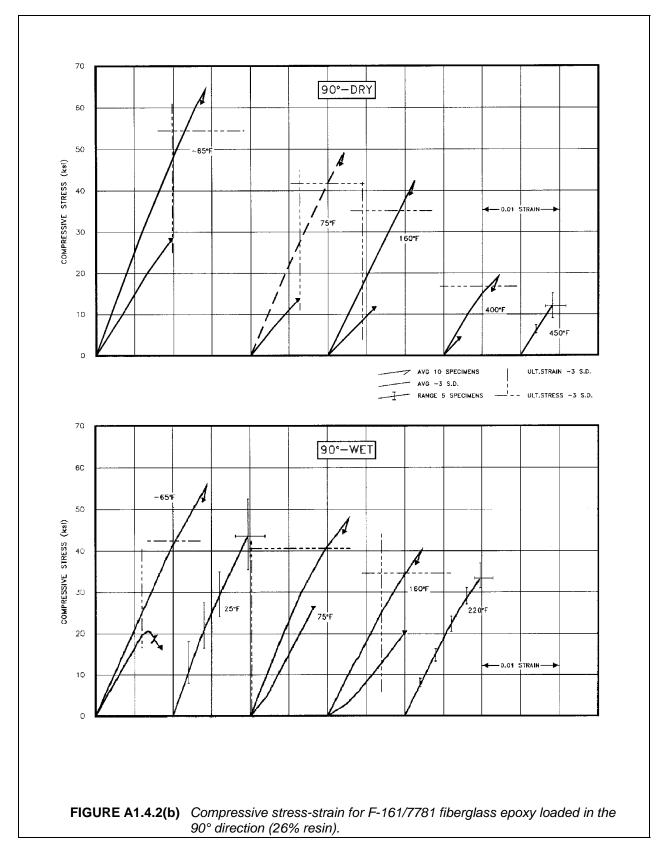


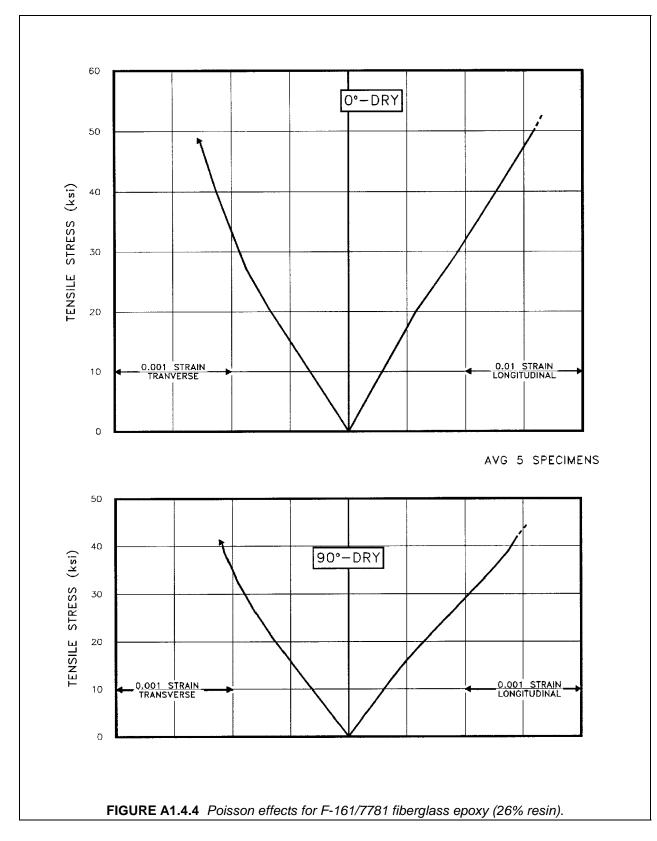


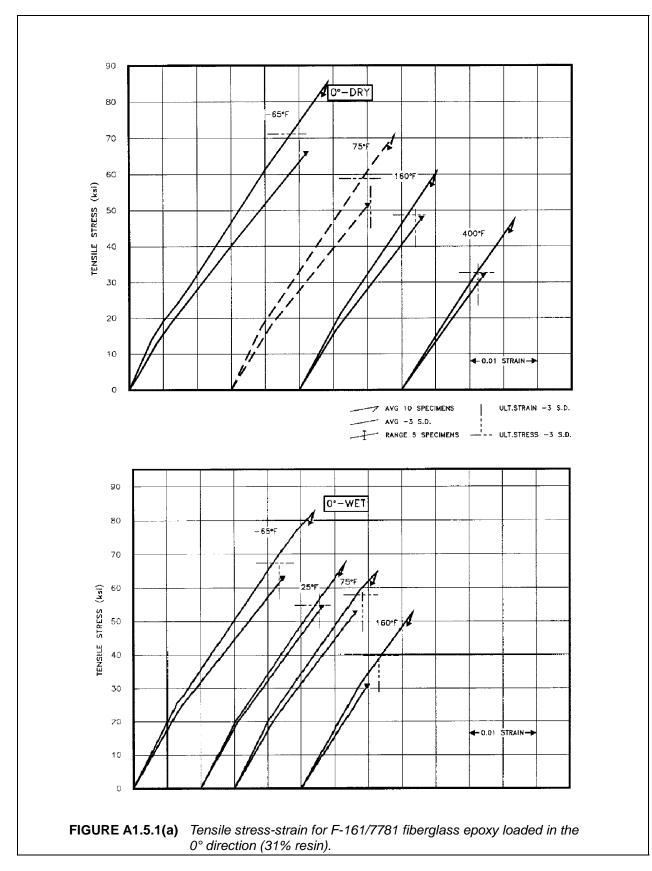


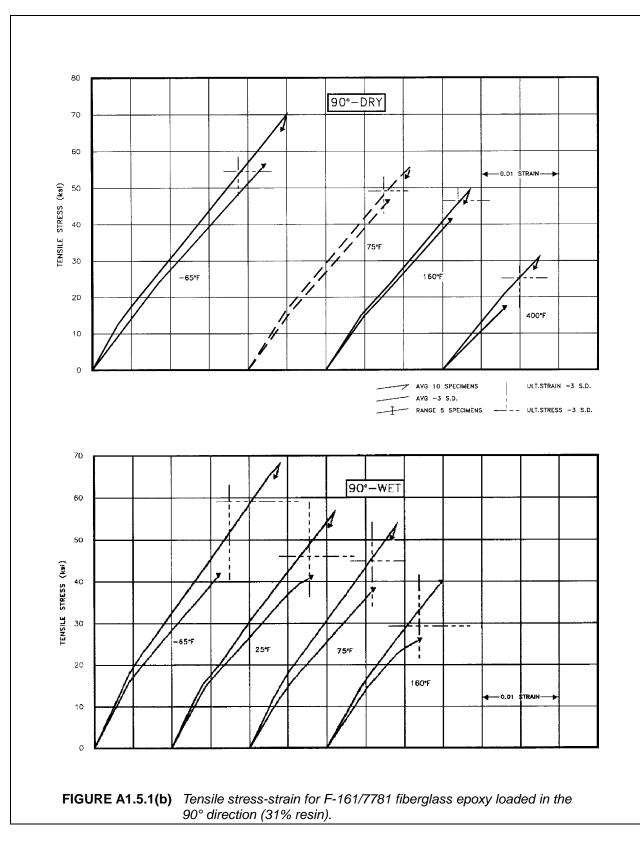


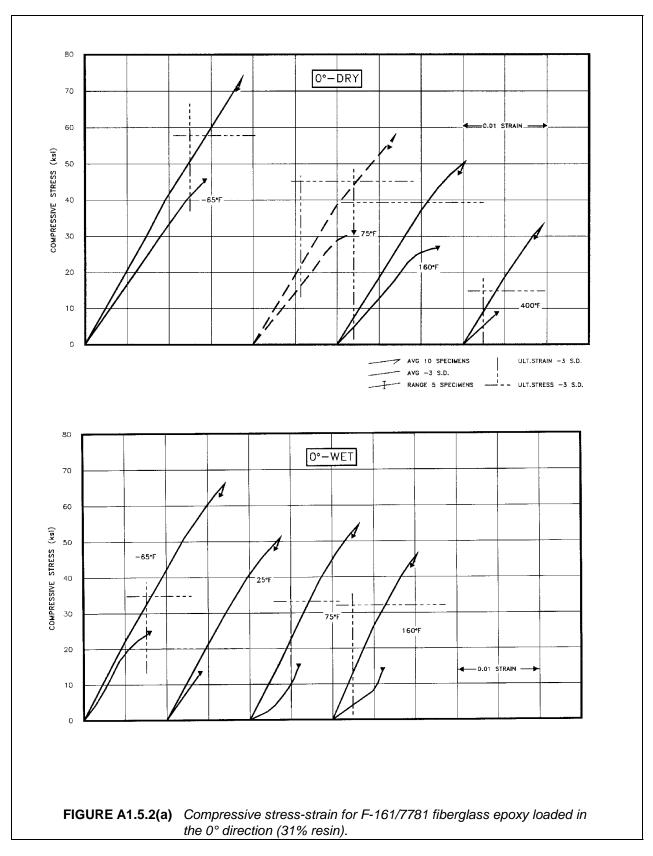

This page intentionally left blank

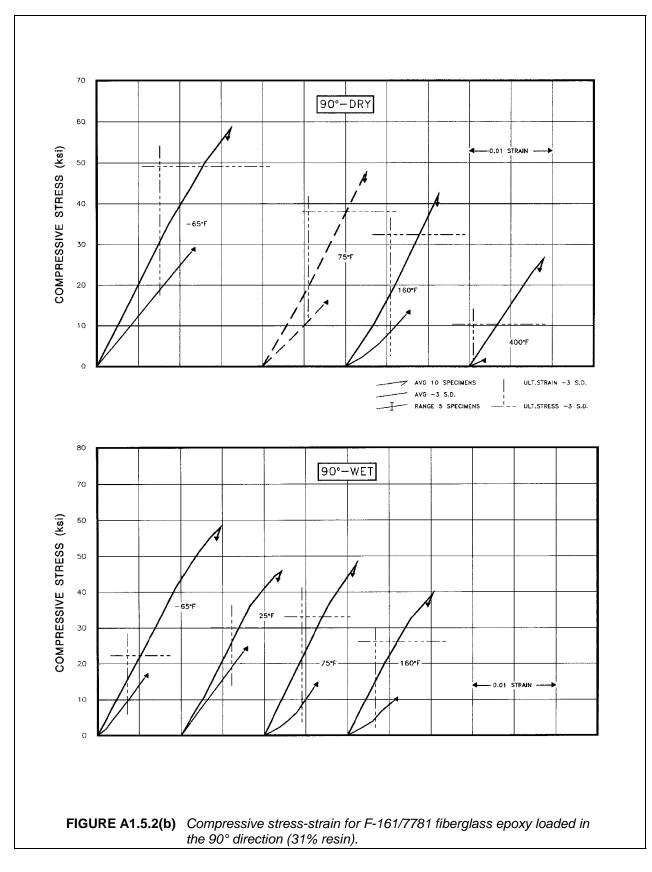

		ummary of Mechanic Lay-up:		Vacuum:		Pressure:		Bleedout	:	Cure:		Postcure	:	Plies:	
Fabrication		Balanced None			55-65 psi		Vertical and Stepped Edge		1 hr/350°F		2 hr/300°F 2.5 hr/400°F		8 and 10		
		Weight Pe			Avg		c Gravity:		Avg. Per	cent Voids:		Avg	. Thicknes		
Physical Properties			$v_{f} = 0.5$			2.01				0.5			0.008 ir		
Test Methods		Tension:	DBK-17		ression: L-HDBK-	Shear: -17 Picture Fr		ramo	Flexure:	Bear M-D790		ng:	Int	erlaminar ASTM-D	
Temperature			-65			17	75		AST	W-D790	16	0°F			0°F
Condition		Dr		W	ot		Drv 75		/et	Drv	10	-	/et	-	rv
Condition		Avg	y SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD
Tension		Avy	50	Avg	50	Avy	50	Avy	30	Avy	50	Avy	50	Avy	50
ultimate stress, ksi	0°	92.4	5.16	80.5	10.87			61.4	3.20	65.7	3.03	50.7	5.72	59.8	3.8
	90°	67.8	10.65	62.3	5.01			50.3		53.6	5.19			35.2	5.1
ultimate strain, %	0°	2.86	2.11	2.37	0.31			1.78			0.14			1.96	
	90°	2.42	3.14	1.97	0.24			1.65			0.12				
proportional limit, ksi	0°														
<u>^</u>	90°														
initial modulus, 10 ⁶ psi	0°	4.42		4.49				4.10		3.92		3.72		3.27	
secondary modulus, 10 ⁶ psi	90°	4.22		4.21				3.76		3.17		3.38		2.86	
	0° 90°	3.32 2.70		3.14 2.74				3.06 2.62		3.24 2.72		3.07 2.55		2.94 2.46	
Compression	90	2.70		2.74				2.02		2.72		2.00		2.40	
ultimate stress, ksi	0°	73.2	6.83	74.0	5.02			57.3	4.0	48.9	3.50	44.7	3.25	28.8	3.0
ulimate stress, ksi	90°	64.2	3.19	55.8	4.40			37.5			2.64		1.90		0.6
ultimate strain, %	0°	1.70	0.42	1.65	0.28			1.09			0.15		0.14		0.0
,	90°	1.40	0.14	1.42	0.27			1.26		1.14	0.23				0.2
proportional limit, ksi	0°	39.0		46.0				42.0		41.0		24.0		15.0	
2	90°	28.0		41.0				24.0		36.0		21.0		11.0	
initial modulus, 10 ⁶ psi	0°	4.42		4.47				4.27		4.05		3.94		3.73	
	90°	4.02		4.19				4.12		3.68		3.40		3.07	
Shear	00 000	00.4	0.0					40.0	1.04	10.1	4 00				
ultimate stress, ksi	0°-90°	20.1	2.3					16.0	1.64	13.4	1.28				
	± 45°					L		7505			1		1000 D		
		Avg	-6	5°F Dry Max	Mir		Avg		Dry ax	Min		Avg	160° D Max	,	Min
Flexure		Avg		wax	IVIII	1	Avg	IVI	ах	IVIIII	- '	٩vg	IVIAX		
ultimate stress, ksi	0°						94.1	0	96.86	89.64	ı				
proportional limit, ksi	0°		1				54.1	J	30.00	09.04	[
initial modulus, 10 ⁶ psi	0°														
Bearing					1						1				
ultimate stress, ksi	0°														
stress at 4% elong., ksi	0°														
Interlaminar Shear															
ultimate stress, ksi	0°						5.5	66	5.65	5.50)				

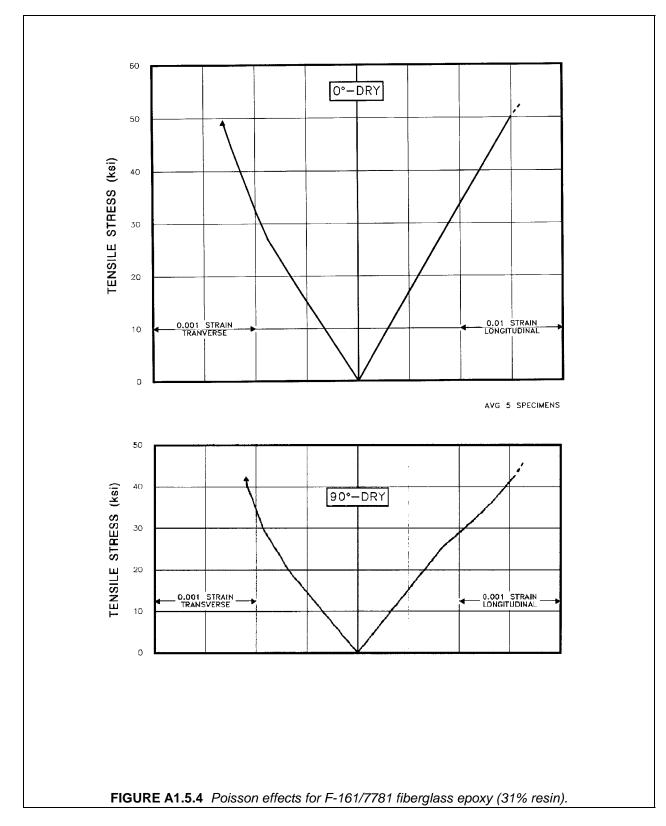

 TABLE A1.4
 Summary of Mechanical Properties of Hexcel F-161/7781 (ECDE-1/0-550) Fiberglass Epoxy (26% Resin)

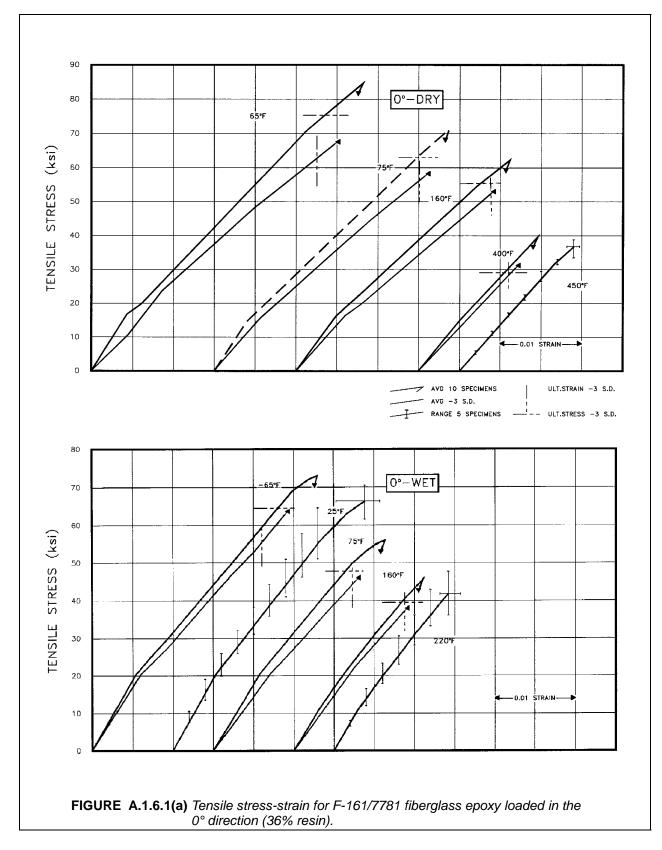


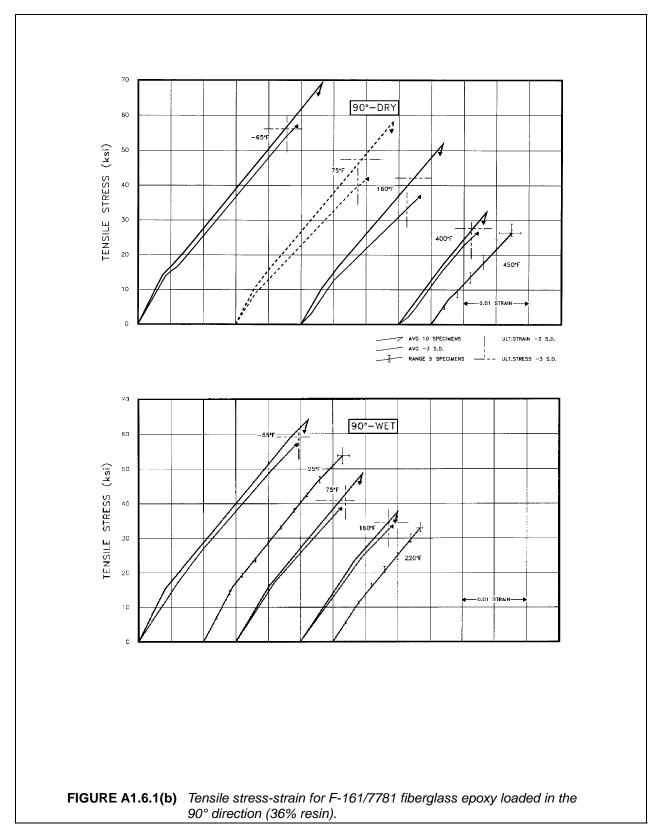


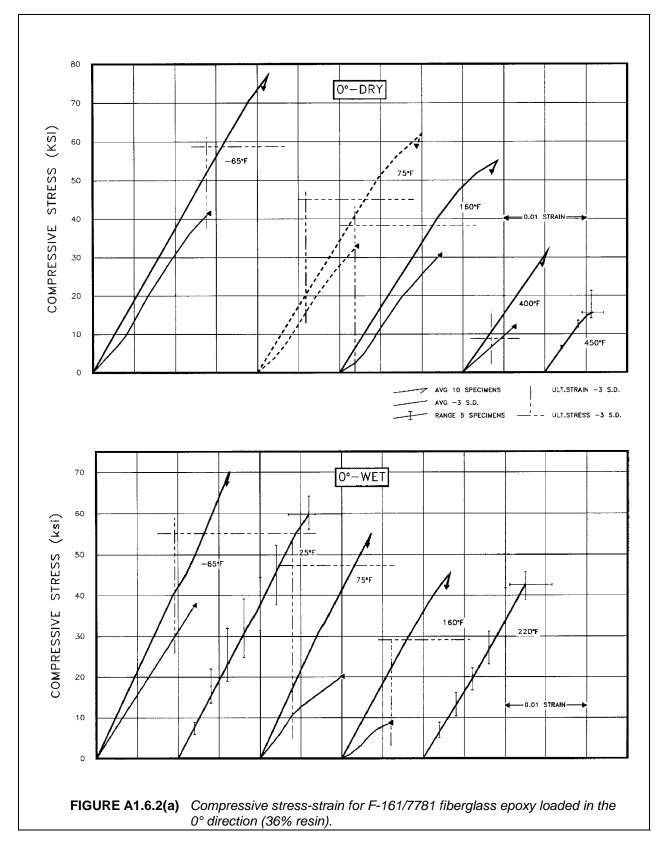


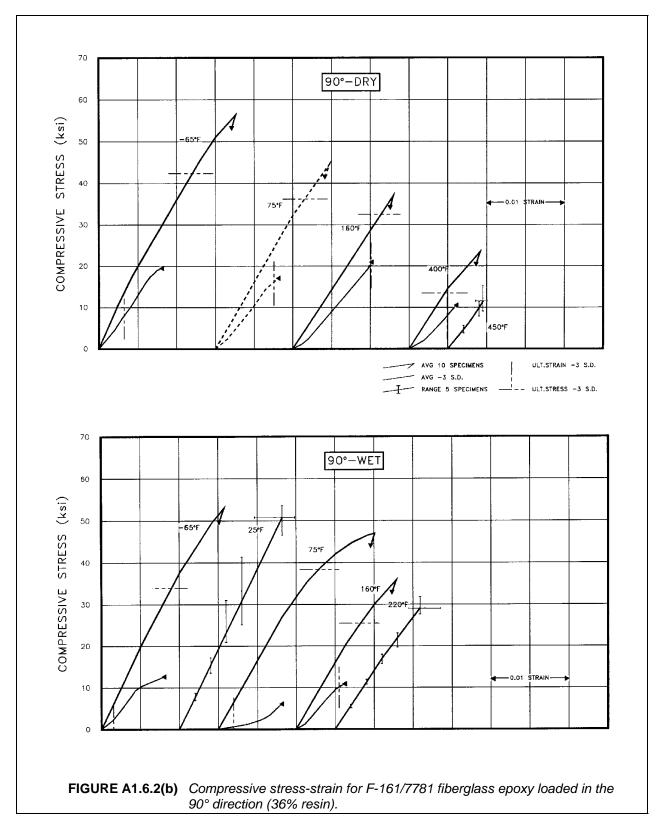

TABL	E A1.5 SU								,	erglass Epo		,		.		
Fabrication		Lay-up: Balanced		Balanced None		55-65 psi		Bleedout: Cure: Vertical and 1 hr/3 Stepped Edge			Postcu)°F 2 hr/ hr/400		nr/300°F 2.5 8 and 1		10	
Physical Properties			ercent Re 31.0			1.92	Gravity:		Avg. Per	cent Voids: 0.6			vg. Thickness: 0.009 inch/ply			
Test Methods		Tension: MIL-H			Compression: MIL-HDBK-17		Shear: Picture Frame		Flexure: AST	xure: ASTM-D790		ng:	Int	erlaminar	aminar Shear:	
Temperature			-65					75°F			160	℃F		400°F		
Condition		Dry		Wet		Dry		Wet		Dry		Wet		D	ry	
		Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD	
Tension																
ultimate stress, ksi	0° 90°		4.68 5.24	82.3 67.9	4.97 2.98			64.0 53.5	2.04 2.91		3.75 0.95	51.4 39.8		47.3 31.0	4.8 1.9	
ultimate strain, %	0° 90°		0.14 0.21	2.53 2.41	0.18 0.22			2.10 1.90	0.06 0.11		0.10 0.06	1.66 1.47		1.66 1.25	0.1 0.0	
proportional limit, ksi	0° 90°															
initial modulus, 10 ⁶ psi	0° 90°			4.30 4.15				3.84 3.68		3.69 3.37	3.72 3.34	3.65 3.30		3.09 2.75		
secondary modulus, 10 ⁶ psi	0° 90°	3.13		3.01 2.96				3.03 2.62		2.97 2.55	0.04 0.25	2.88 2.46		2.94 2.47		
Compression	00	2.02		2.00				2.02		2.00	0.20	2.40		2.77		
ultimate stress, ksi	0° 90°		5.18 3.17	66.0 57.5	10.75 11.56			54.4 47.3	7.04 4.73			45.9 38.7		32.8 25.8	6.0/ 8.2	
ultimate strain, %	0° 90°	1.86	0.21	1.72 1.44	0.32			1.33 1.10	0.28			1.04 0.99	0.23	0.95 0.87	0.2	
proportional limit, ksi	0° 90°	44.0	0.20	38.0 33.0	0.00			33.0 30.0	0.21	32.0		25.0 21.0		16.0 15.0	0.2	
initial modulus, 10 ⁶ psi	0° 90°	3.90		4.04 3.84				4.03 3.96		3.42 3.23		4.06 4.01		3.50 3.07		
Shear ultimate stress, ksi	0°-90°		2.23	0.04				15.9	0.72		0.82	4.01		0.07		
ultimate stress, ksi	0 -90 ±45°		2.23					15.9	0.72	13.7	0.62					
			-6	5°F Dry			-		Dry				160° D	/		
		Avg	Avg Max		Mir	า	Avg	Ma	ax	Min	A	Avg	Max	Min		
Flexure ultimate stress, ksi	0°						90.2	23	93.74	87.29	Э					
proportional limit, ksi initial modulus, 10 ⁶ psi	0° 0°						0.0.1	-		02	-					
Bearing ultimate stress, ksi stress at 4% elong., ksi	0° 0°															
Interlaminar Shear ultimate stress, ksi	0°						5.5	56	5.65	5.50	D					

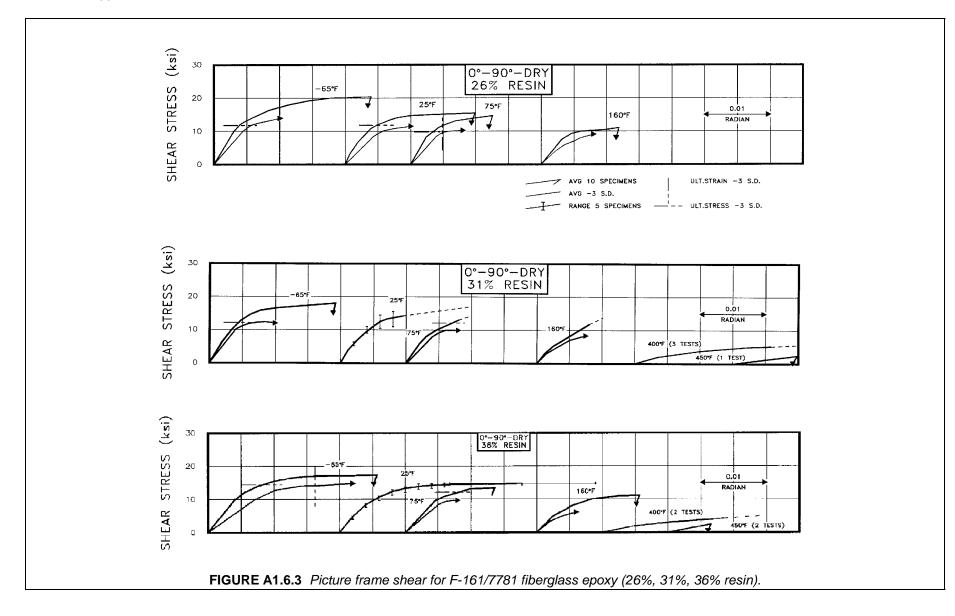

TABLE A1.5 Summary of Mechanical Properties of Hexcel F-161/7781 (ECDE-1/0-550) Fiberglass Epoxy (31% Resin)

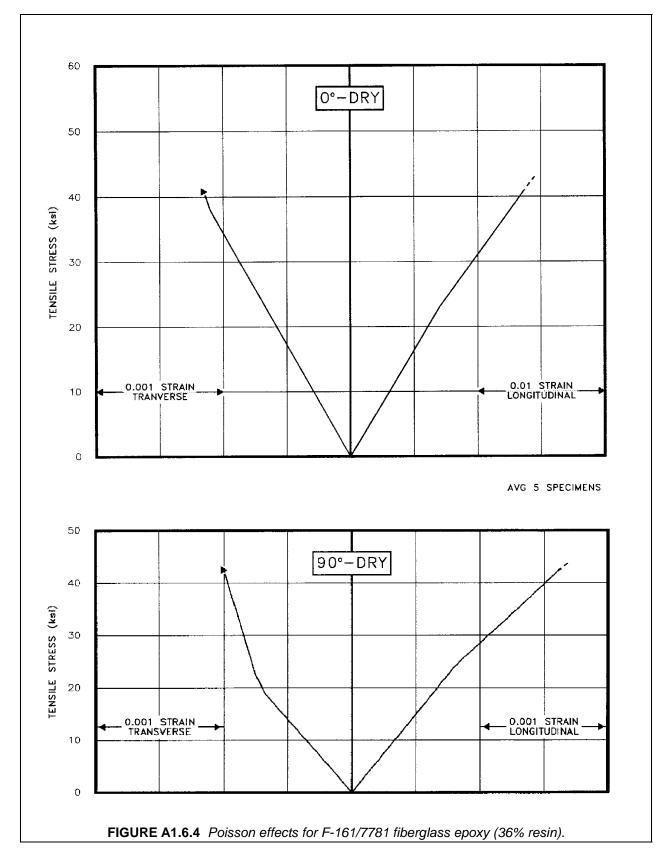


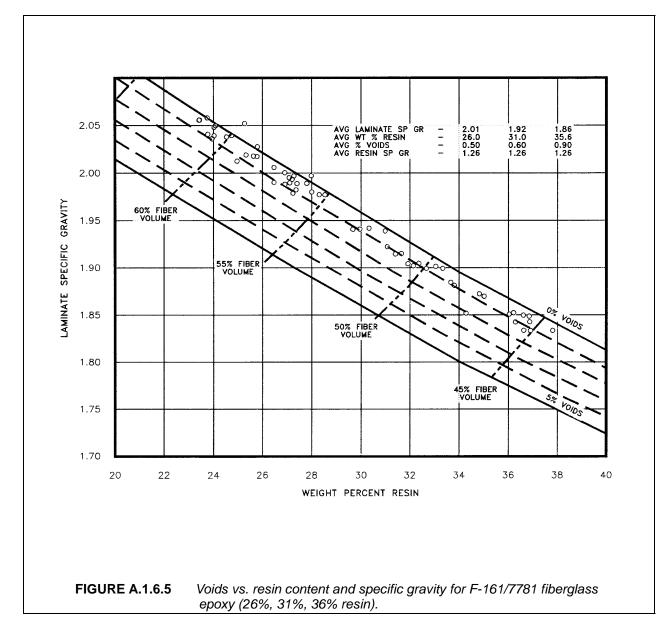


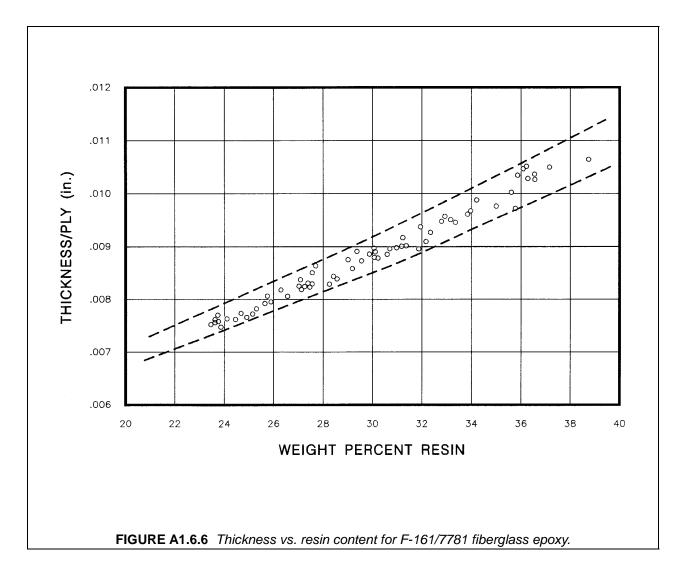


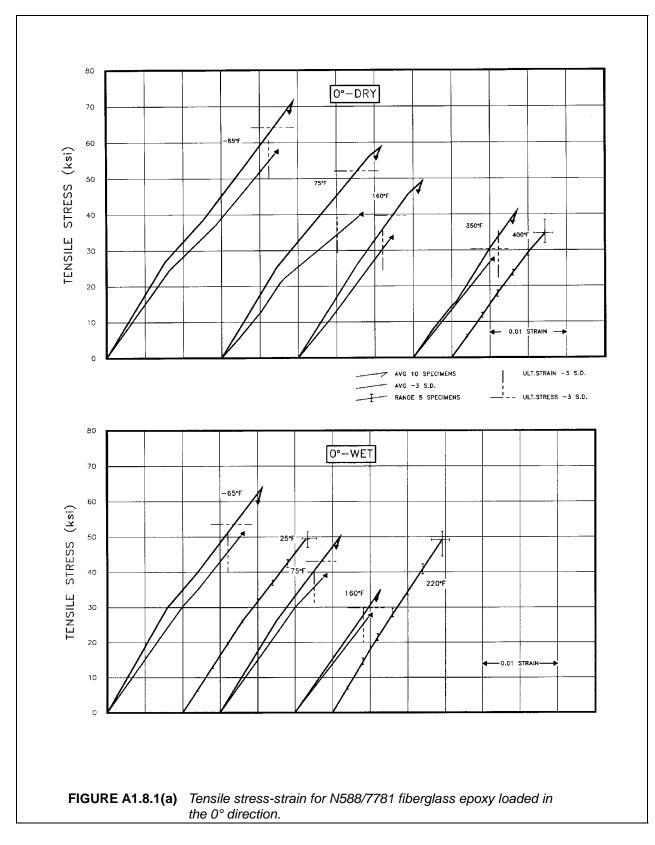

TABL	E A1.6 Su								,	<u> </u>		,		Plies:		
Fabrication		Lay-up: Balance		Vacuum: None		Pressure 55-65		Bleedout: Vertica Steppe	al and	Cure: 1 hr/350°F		Postcure: 2 hr/300°F 2.5 hr/400°F		8		
Physical Properties		Weight Pe 3	ercent Re 5.6	1.86				Avg. Percent Voids: 0.9				Avg. Thickne			ess:) inch/ply	
Test Methods		Tension: MIL-H	IDBK-17	С	ompressi MIL-HI	on: DBK-17	Shear: Pict	ure Frame		exure: ASTM-D7	ure: Bearing		Int	erlaminar	Shear:	
Temperature			-65	5°F			75	°F			160	0°F	•	400)°F	
Condition		Dry		Wet		D	ry	W		Dr	у	W	/et	D	ry	
		Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD	
Tension																
ultimate stress, ksi	0° 90°		2.85 4.19		2.89 1.61			55.5 48.9	2.57 2.67		2.24 3.25			39.2 32.0	3.40 1.44	
ultimate strain, %	0° 90°		0.18 0.18		0.02 0.05			2.12 1.95	0.14 0.09		0.08 0.19			1.45 1.35	0.13 0.08	
proportional limit, ksi	0° 90°															
initial modulus, 10 ⁶ psi	0° 90°	3.84		3.81 3.81				3.58 3.30		3.25 3.13		3.35 3.18		2.96 2.51		
secondary modulus, 10 ⁶ psi	0° 90°	2.81		2.75 2.67				3.04 2.72		2.49 2.39		3.04 2.70		2.74		
Compression	00	2.00		2.07				2.12		2.00		2.10		2.22		
ultimate stress, ksi	0° 90°		5.88 4.56	68.8 52.9	4.36 6.32			55.1 47.0	2.63 6.78		5.49 1.47			31.0 23.2	8.08 3.26	
ultimate strain, %	0° 90°	2.13	0.28 0.48	1.64 1.58	0.23 0.57			1.36 2.00	0.32 0.89	1.90	0.56 0.09	1.32	2.41	1.02	0.23	
proportional limit, ksi	0° 90°	28.0	0.10	24.0 17.0	0.01			24.0 16.0	0.00	32.0 28.0	0.00	22.0 17.0		17.0 12.0	0.1	
initial modulus, 10 ⁶ psi	0° 90°	4.10		4.50 4.10				3.87 3.64		3.45 2.87		3.36		2.87 2.63		
Shear ultimate stress, ksi	0°-90°		1.04					15.0	0.70		0.62			2.00		
ultimate stress, ksi	0 -90 ±45°		-							12.7	0.02					
			-6	5°F Dry				75°F Dry		Min		-	160° D			
	Avg		Max	Mir	ו	Avg		Max			Avg	Max	Min			
Flexure ultimate stress, ksi	0°						86.3	81	92.16	79.0	07					
proportional limit, ksi initial modulus, 10 ⁶ psi	0° 0°						00.0		52.10	,						
Bearing																
ultimate stress, ksi stress at 4% elong., ksi	0° 0°															
Interlaminar Shear ultimate stress, ksi	0°						5.5	6	5.65	5.	50					

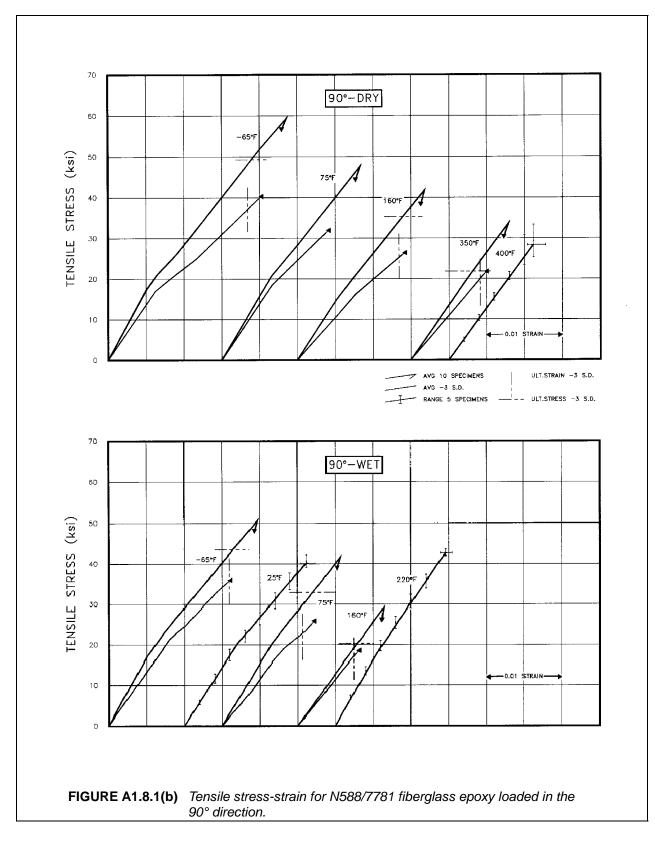

TABLE A1.6 Summary of Mechanical Properties of Hexcel F-161/7781 (ECDE-1/0-550) Fiberglass Epoxy (36% Resin)











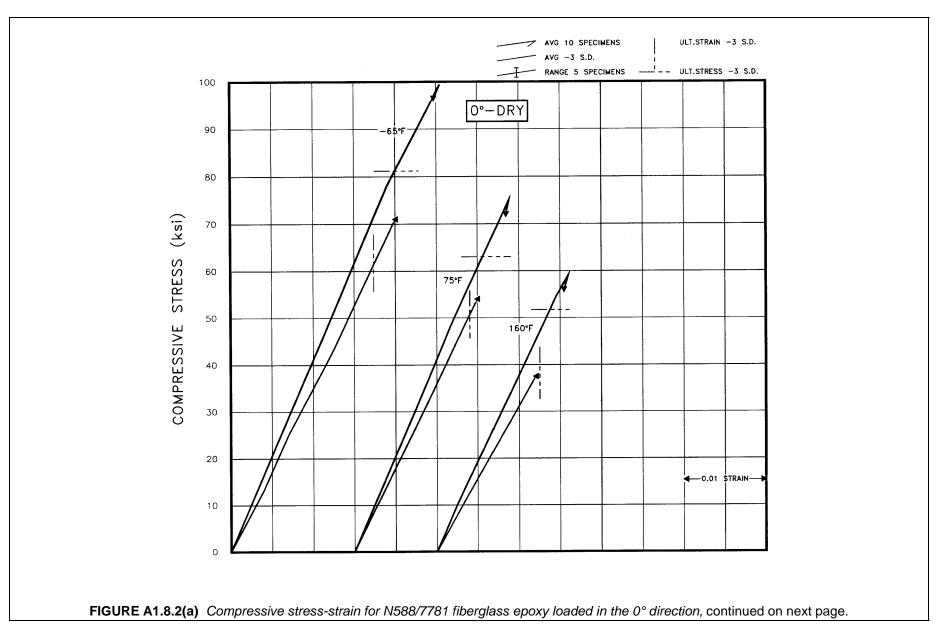
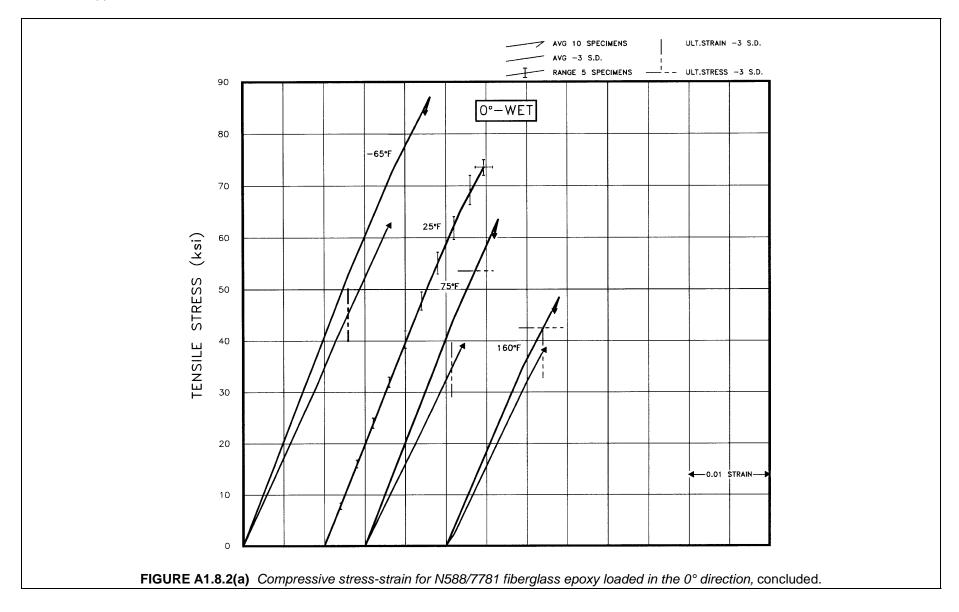
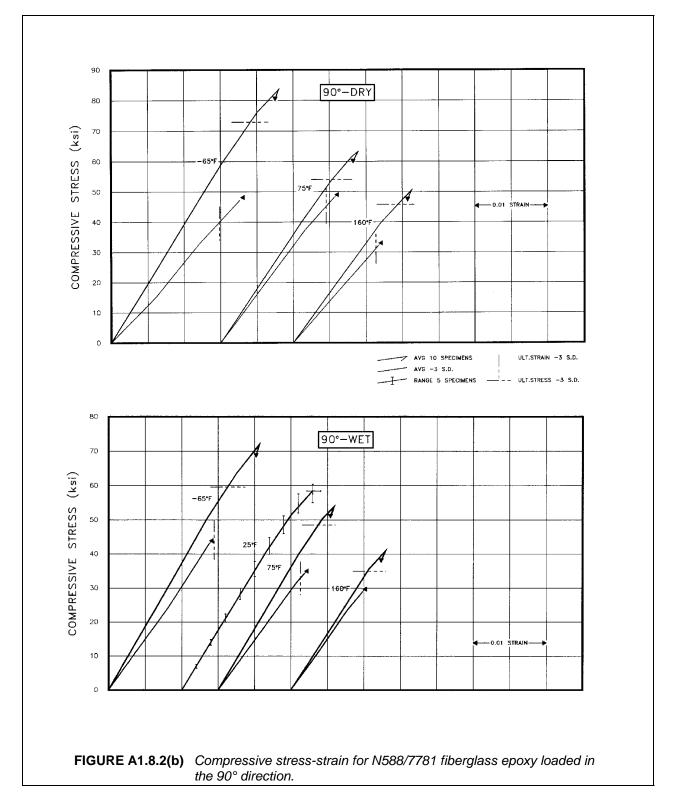
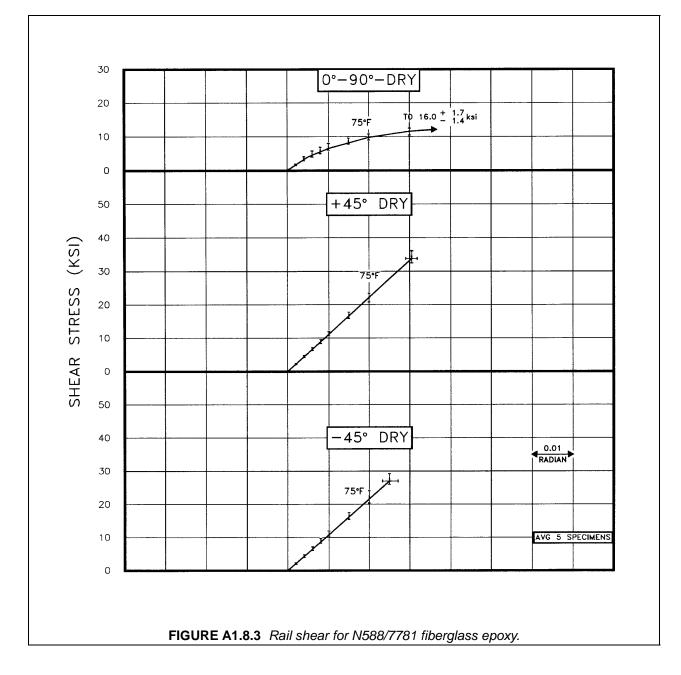
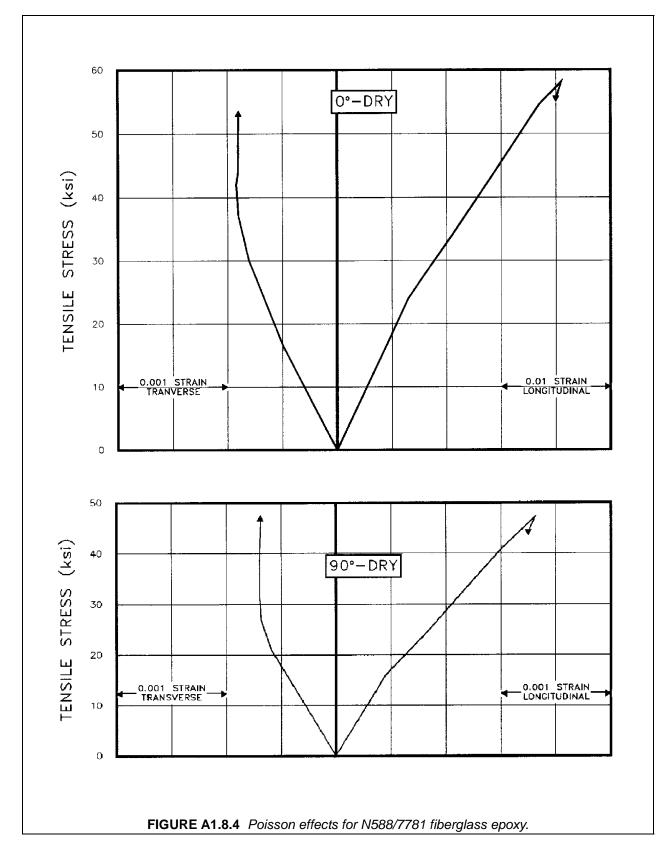

This page intentionally left blank

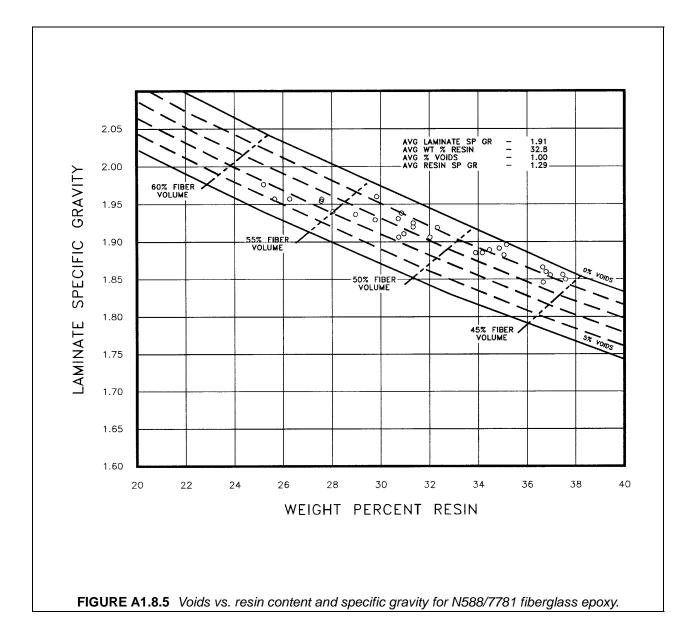
	TABLE A1	1						Bleedou		Cure:	மல் டிப	Postcu	ro:	Plies:		
Fabrication		Lay-up: Balanced		Vacuum: None		Pressure: B 45-55 psi		Verti			e to 350°I		re: one	Plies:		
		Daialic	cu	None		45-55 psi		veru	cai		350°F	, NC		0		
		Weight Pe	ercent Re	sin:	Avg.	Specific	Gravity:		Avg. Per	cent Void		Avo	. Thickne	ss:		
Physical Properties			$v_{f} = 0.5$	1	-	[.] 1.91			-	1.0		-	0.075 i			
		Tension:		Cor	npressio		Shear:	-	Flexure:		Bearing:			rlaminar		
Test Methods		ASTM-D6			MIL-HD	BK-17	Rai		ASTM-	D790		M-D953		Short Bea		
Temperature			-65				75					0°F			00°F	
Condition		Dr	j	We	-		Dry		Vet		ry		Vet		Dry	
<u> </u>		Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD	
Tension	00	74.4	0.4	00.0		50 /		50		40.0		05.0		40		
ultimate stress, ksi	0° 90°		2.4 3.3	63.8 50.6	3.3 2.4	58.4 47.2		50.0 41.1								
ultimate strain, %	0°		3.3 0.09	2.06	2.4 0.15	2.05		41. 1.6 ⁻								
diffiate strain, 70	90°	2.41	0.03	1.96	0.13	1.81		1.5	-							
proportional limit, ksi	0°		1.7	28.7	2.5	23.3		25.4								
1 -1	90°		0.8	19.2	1.6			18.								
initial modulus, 10 ⁶ psi	0°	3.64		3.85		3.71	1	3.5		3.58		3.10)	3.13		
	90°	-		3.37		3.56	6	3.23	3	2.92		2.63	3	2.80	0.23	
secondary modulus, 10 ⁶ psi	0°															
,	90°															
Compression	09	00.0	5.0	07.4	5 0	74.0		<u></u>		50.0		40.0				
ultimate stress, ksi	0° 90°		5.9 3.5	87.4 71.8	5.8 4.1	74.0 62.9		63.5 53.1								
ultimate strain, %	90 0°		0.26	2.30	0.25	1.89		1.6			-					
	90°		0.20	2.06	0.20	1.87		1.5								
proportional limit, ksi	0°		2.6	46.2	2.5	44.5		39.8								
	90°	40.8	3.8	42.4	2.7	35.3	3 3.7	34.4	4 2.3			24.4	1.6	6		
initial modulus, 10 ⁶ psi	0°			4.15		4.18		4.1		3.88		3.70				
	90°	4.08		3.83		3.68	3	3.72	2	3.41		3.41				
Shear																
ultimate stress, ksi	0°-90°	_				16.0	0 1.05			13.8						
	± 45°															
		A	-6	5°F Dry	N.4'	-	A		75°F Dry			A	160° D			
Flowers	Avg		Max Mir		n Avg		N	Max			Avg	Max		Min		
Flexure ultimate stress, ksi	0°	4	05.0	115.6		95.6	90	4	102.6	0	4.5	79.3		87.8	74.0	
proportional limit, ksi	0°		69.6	75.9		95.6 59.0	90 68		72.4		4.5 4.6	79.3 64.8		07.0 72.2	74.0 57.2	
initial modulus, 10 ⁶ psi	0°		3.48	3.62		3.42	3.3		3.60		.20	3.19		3.27	3.09	
Bearing				0.02			0.0		0.00			0.10			0.00	
ultimate stress, ksi	0°		84.6	92.5		77.9	68	.4	71.3	6	6.0	48.4		53.6	44.2	
stress at 4% elong., ksi	0°		29.3	30.9		26.5	26		27.4		5.3	21.8		22.8	20.6	
Interlaminar Shear																
ultimate stress, ksi	0°		8.84	9.16		8.56	8.3	5	8.56	8	.05	7.39		7.72	6.47	

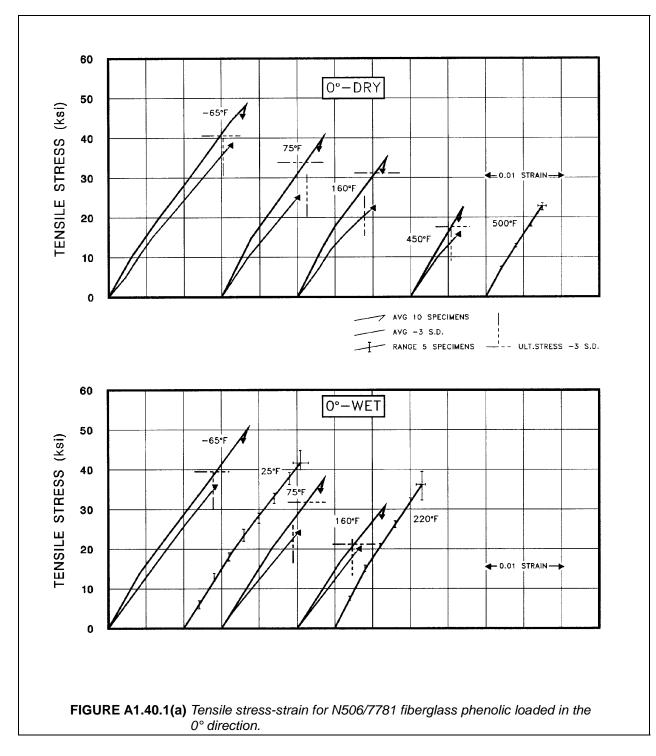

 TABLE A1.8
 Summary of Mechanical Properties of Narmco N588/7781 (ECDE-1/0-550) Fiberglass Epoxy

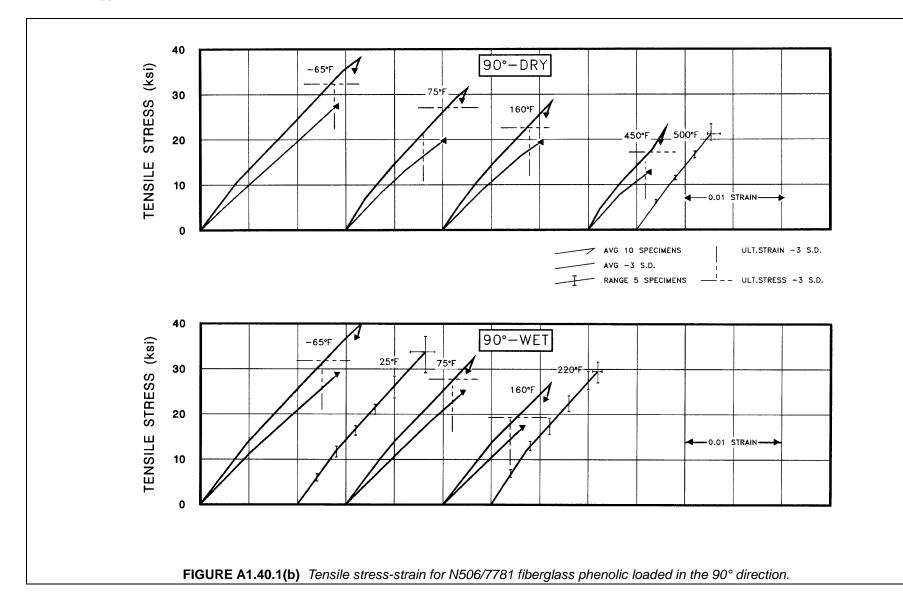


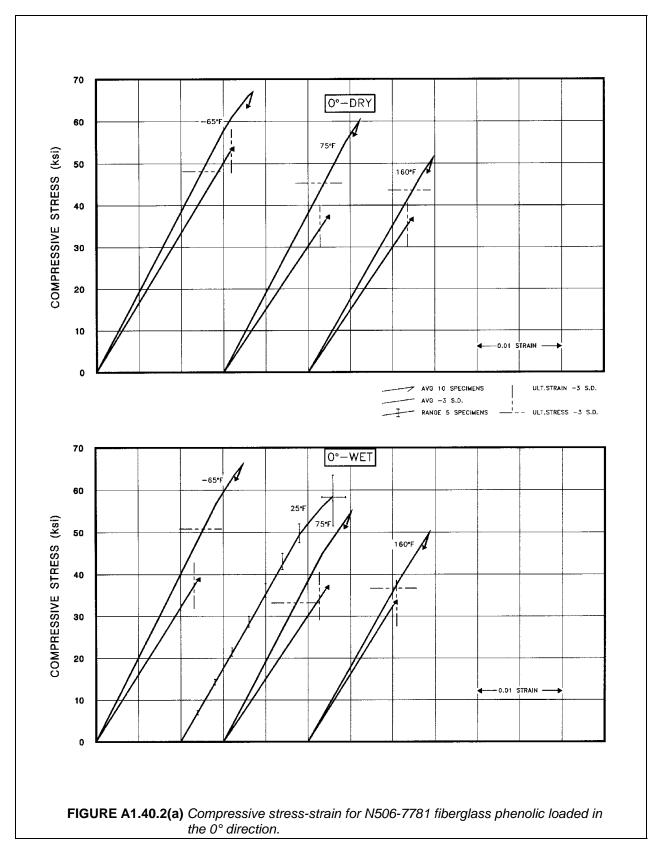


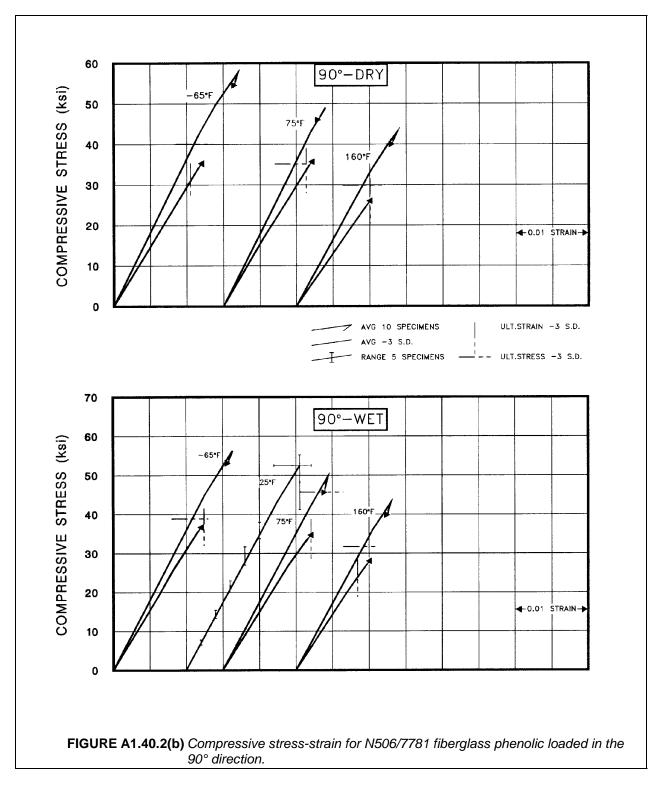


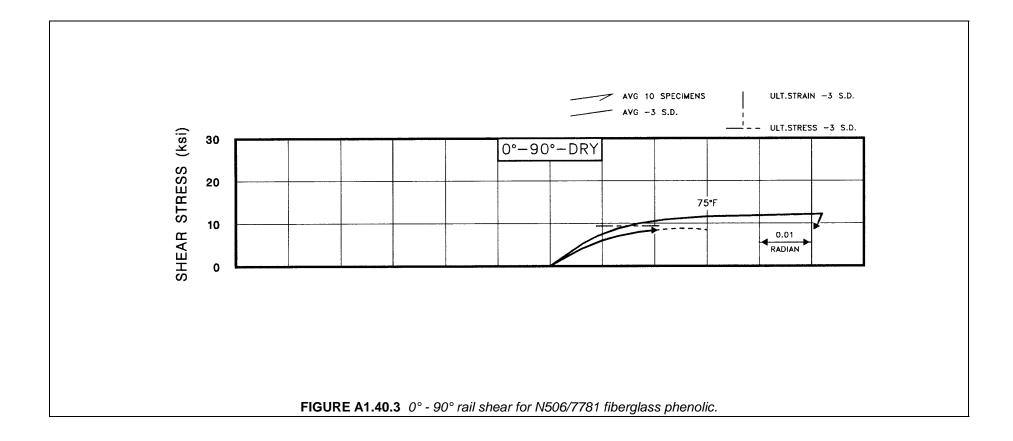

MIL-HDBK-17-2F

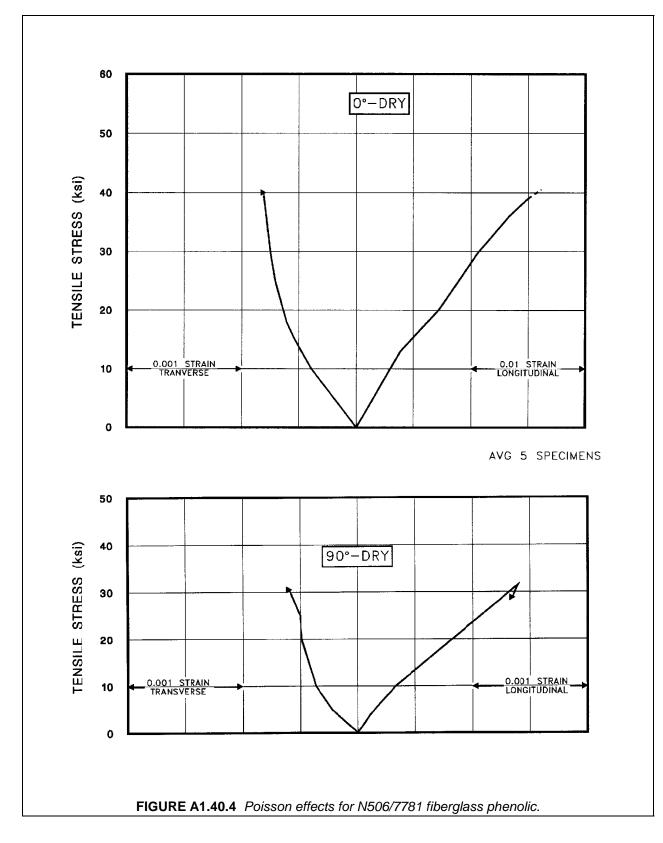


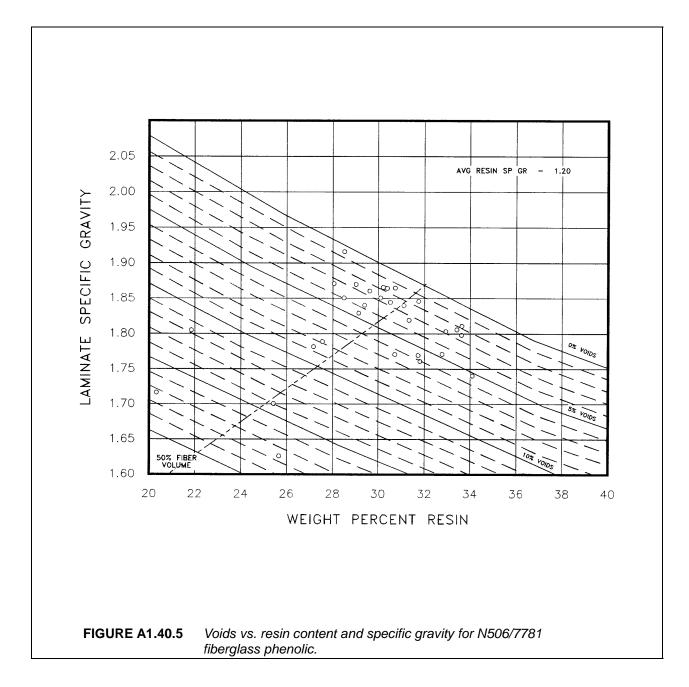

This page intentionally left blank

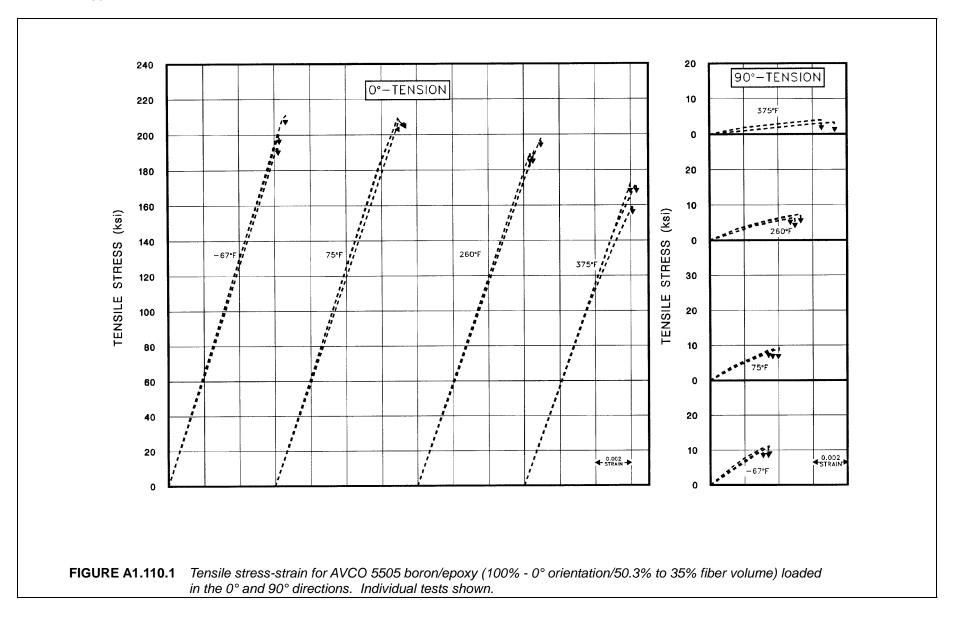

Volume 2, Appendix A1

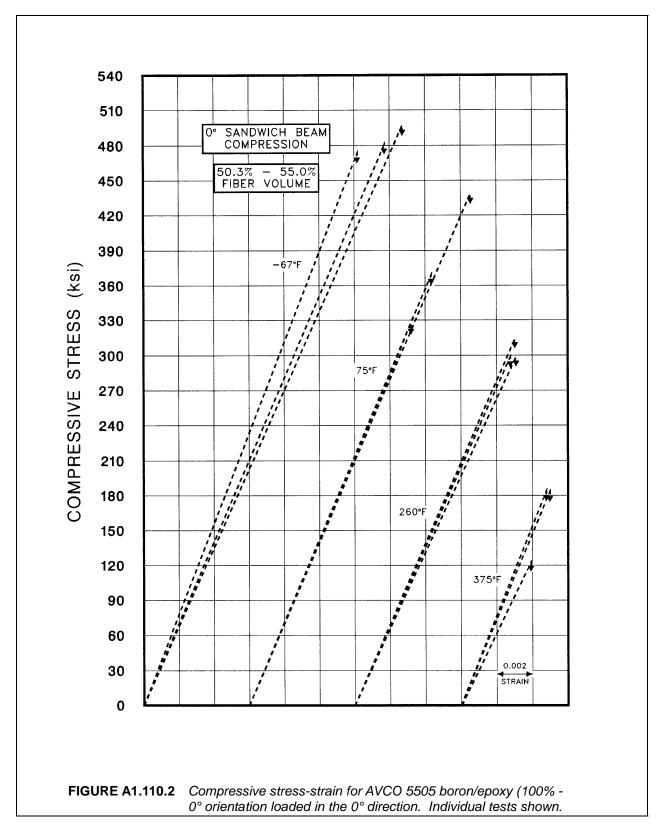

	TABLE A1.40	Lay-up:	,	Vacuum:		Pressur		Bleedout		Cure:		Postcure:		Plies:	
Fabrication		Balanc						Vertic						8	
		Weight P	ercent Re	esin:	Avg.	Specific	Gravity:			cent Voids:			Thicknes		
Physical Properties		25.	3 - 32.3			1.72 -				gure 4.40.5			.071 - 0.0		
		Tension:			mpressic		Shear:		Flexure:		Bearin			erlaminar	
Test Methods		ASTM-I	D638 TYF		MIL-HDE	3K-17	Rail		ASTN	1-D790		TM-D953		Short Bea	
Temperature			-65				75				160	D°F		40	0°F
Condition		D	,	We			lry	W		Dry	/	W			Dry
		Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD
Tension															
ultimate stress, ksi	0°		2.4	49.8	3.3	38.9		37.2	1.8	35.3	1.4	30.6	3.0	21.6	
	90°		1.8	40.0	2.7	31.5		32.1	1.4	27.9	1.7	26.2	2.2	21.6	
ultimate strain, %	0°		0.07	1.76	0.13	1.33		1.34		1.19	0.10	1.15	0.14	0.69	
	90°		0.08	1.65	0.13	1.26		1.32		1.11	0.07	1.11	0.14	0.78	
proportional limit, ksi	0°		0.9	18.1	1.2	13.5		17.0		13.9	1.0	14.9	0.70	9.7	
6	90°		0.4	12.5	0.9	9.2		12.8		10.3	0.8	11.6	0.70	8.6	
initial modulus, 10 ⁶ psi	0°		0.21	3.35	0.20	3.94		3.14		3.74	0.41	3.01	0.19	3.57	
6	90°		0.29	3.04	0.22	3.54	0.41	2.81	0.24	3.33	0.37	2.78	0.21	3.18	0.30
secondary modulus, 10 ⁶ psi	0°														
	90°	b													
Compression															
ultimate stress, ksi	0°		6.2	65.9	5.0	59.7		54.5		50.6	2.3	49.2	4.2		
	90°	-	5.8	56.2	5.8	49.0		48.7	4.0	43.0	4.3	42.9	3.7		
ultimate strain, %	0°		0.09	1.69	0.18	1.58		1.49		1.45	0.06	1.40	0.12		
	90°		0.21	1.63	0.13	1.40		1.43		1.37	0.12	1.31	0.15		
proportional limit, ksi	0°		3.8	38.5	7.9	39.0		41.2		39.9	2.4	35.0	1.7		
	90°		3.8	34.4	5.0	32.6		35.5		32.4	3.1	31.1	3.3		
initial modulus, 10 ⁶ psi	0°	0.00	0.19	4.17	0.29	3.95		3.89		3.68	0.21	3.67	0.12		
<u></u>	90°	3.69	0.25	3.68	0.17	3.70	0.20	3.57	0.20	3.30	0.23	3.45	0.21		
Shear		40.0				40.0	0.07								
ultimate stress, ksi	0°-90°					12.3	0.97			11.4					
	±45°	b													
			-6	5°F Dry				75°F					160° Di	у	
		Avg		Max	Mir	า	Avg	M	ax	Min	A	Avg	Max		Min
Flexure															
ultimate stress, ksi	0°		68.2	72.8		65.2	58.		64.0	52		52.7		56.3	47.4
proportional limit, ksi	0°		59.3	66.1		54.6	48.		56.8	42		42.4		46.2	38.8
initial modulus, 10 ⁶ psi	0°	`	2.97	3.04		2.88	2.8	9	2.99	2.7	78	2.97		3.06	2.82
Bearing															
ultimate stress, ksi	0°		65.7	73.2		57.0	58.		64.0	46		49.5		55.8	44.
stress at 4% elong., ksi	0°)	25.1	26.0		23.7	24.	5	24.9	23	.8	21.6		22.6	20.
Interlaminar Shear															
ultimate stress, ksi	0°		4.83	5.10		4.29	4.6	2 1	4.92	3.9	AU	4.62		4.88	4.0


TABLE A1.40 Summary of Mechanical Properties of Narmco N506/7781 (ECDE-1/0-A1100) Fiberglass Phenolic.








MIL-HDBK-17-2F

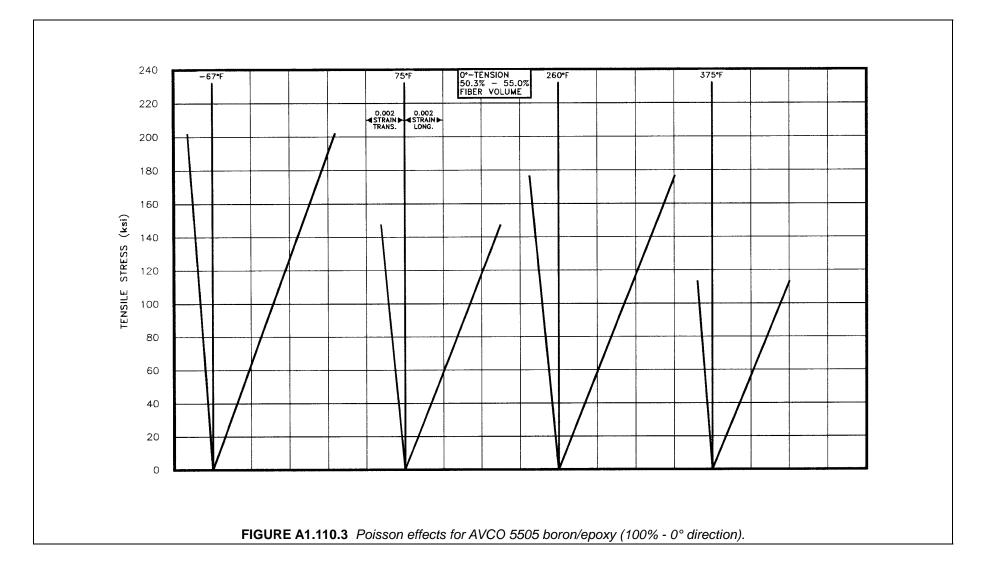
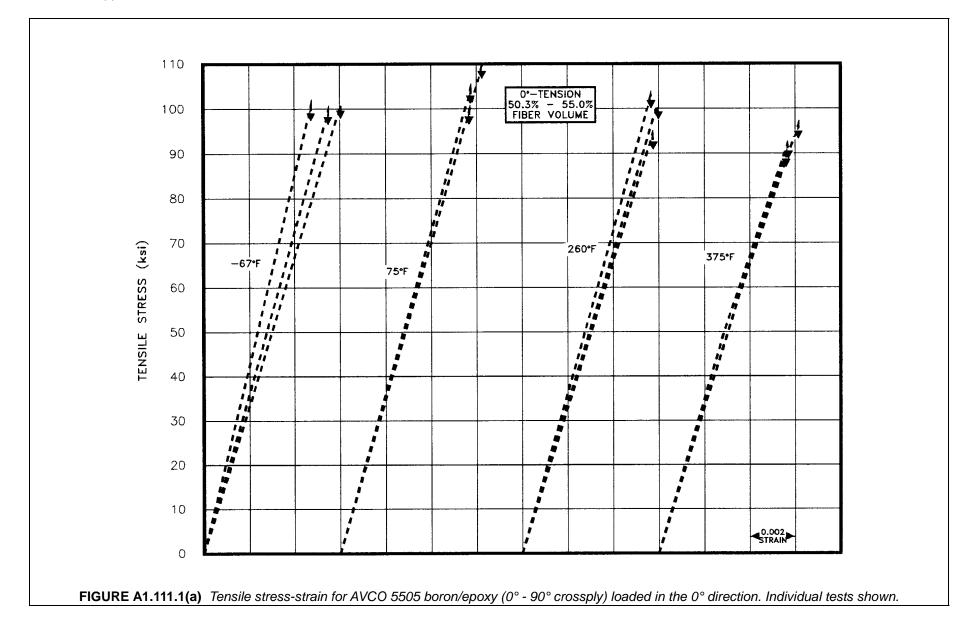
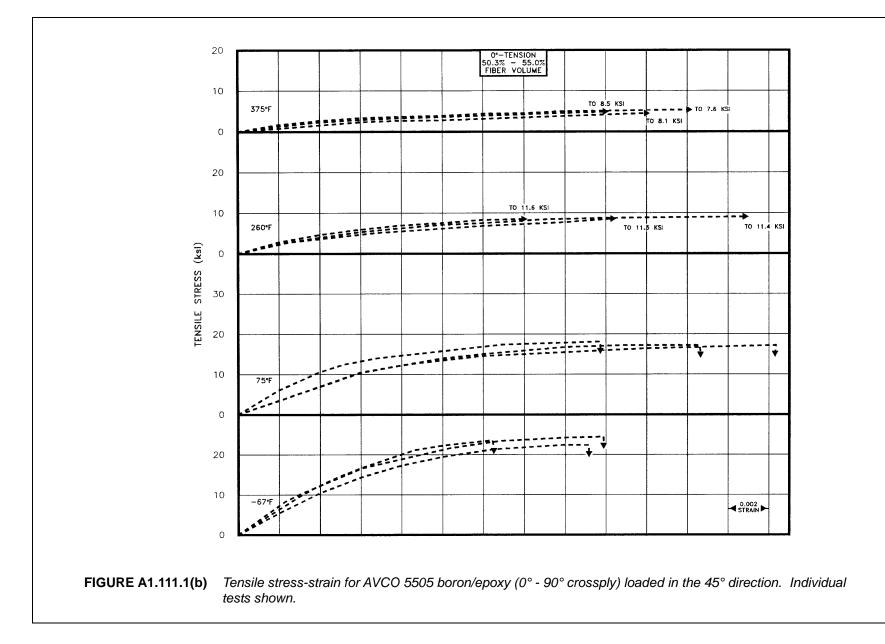
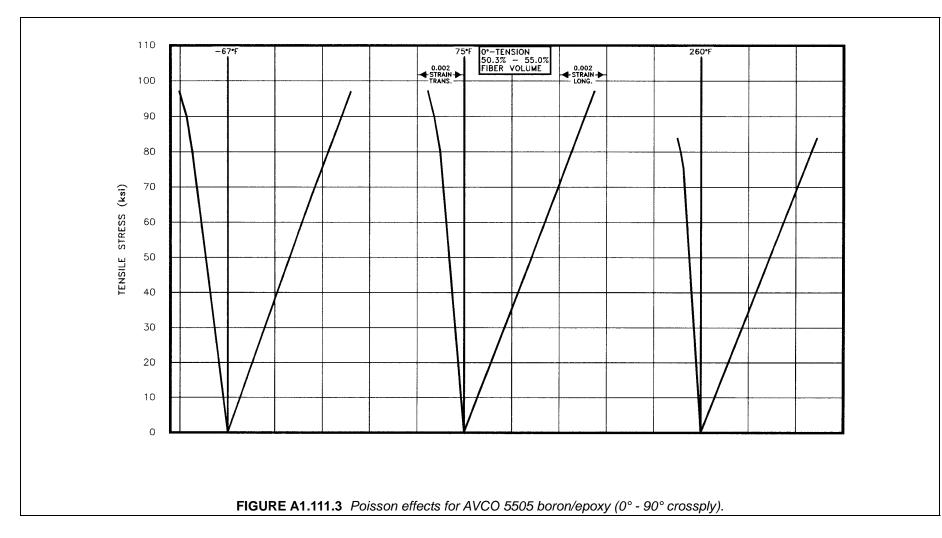

Volume 2, Appendix A1

	TABLE A1.110	-							-			-			
Fabrication		Lay-up: Parallel		cuum: 2 ins	P	essure: 50 ± 5 psi	Ble	edout:	C	ure: 1.5hr/ 35 ± 10°F	50°F	ostcure: 2hr/350		lies: 6	
Physical Properties		Weight Pe			-	pecific Gravit	y:		g. Percer				hickness: 0.005 in/pl	у	
Test Methods		Tension: Tab-en		ompressio Sandwi	on: ch Bean	Shear:			exure: 1 Point Lo	adina	Bearin	g:		minar She ort Beam	ear:
Temperature		Tab-en		7°F	ch Dean		7!	5°F		aung	26	0°F	510	375	۶°F
Condition		Dry			/et	Dry			Vet	Di			Vet	Dr	
		Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	S
Tension															
ultimate stress, ksi	0°					208.3				191.6				167.3	
ultimate strain, %	90° 0°					8.7 6930				6.5 6660				3.3 6150	
uumate Stialii, 70	90°					3710				4970			1	6920	
proportional limit, ksi	0°					175.5				140.0			1	79.5	
	90°														
initial modulus, 10 ⁶ psi	0°					30.9				29.6				28.6	
	90° 0°														
secondary modulus, 10 ⁶ psi	90°														
Compression	30												-		
ultimate stress, ksi	0°	482.3				378.0				303.3				143.9	
	90°														
ultimate strain, %	0°					10830				8920				4466	
proportional limit, ksi	90° 0°														
proportional limit, KSI	90°														
initial modulus, 10 ⁶ psi	0°					34.8				34.6				35.8	
	90°														
Shear															
ultimate stress, ksi	0°-90°														
	±45°		0.5					7505 0					1000 D		
		Avg	-65 Ма	°F Dry	Min	Ave		75°F D Max	ry	Min	Avç	. .	160° Dry Max	N	lin
Flexure		Avy	110	1.7		AV	1	IVIDA		171111	Αvί	1	Ινιαλ		
ultimate stress, ksi	0°														
proportional limit, ksi	0°														
initial modulus, 10 ⁶ psi	0°														
Bearing															
ultimate stress, ksi stress at 4% elong., ksi	0° 0°														
Interlaminar Shear	0														
ultimate stress, ksi	0°														

 TABLE A1.110
 Summary of Mechanical Properties of Narmco 5505 Boron-Epoxy (100%-0° Direction) (Tentative).




MIL-HDBK-17-2F


Volume 2, Appendix A1

Fabrication		Lay-up: [2(0/90)]	S	Vacuu 2 ii		Press 50 :	ure: ± 5 psi	Bleedo	ut:		r/ 350°F I0°F	Postcur 2hr/3		Plies: 6	
Physical Properties		Weight Per				•	c Gravity:			ercent Voi			rg. Thickne 0.005 i	n/ply	
Test Methods		Tension: Tab-end		ompress	sion:	S	hear: Picture F	rame	Flex	ure:	Be	aring:	Interl	aminar She	ar:
Temperature		100 0110	-67°	F			75				26	60°F		375°	F
Condition		Dry		W		[Dry	W	/et	Dr	/	V	/et	Dry	
		Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD
Tension ultimate stress, ksi	0°	99.9 23.6				103 17				98.5 11.4				91.9 8.1	
ultimate strain, %	90° 0° 90°	23.0 5400 15850				57 2447	0			5830				5780	
proportional limit, ksi	0° 90°	53.0				77				48.6				48.6	
initial modulus, 10 ⁶ psi	0° 90°	18.9				18	.0			17.5				16.5	
secondary modulus, 10 ⁶ psi	0° 90°														
Compression															
ultimate stress, ksi	0° 90°														
ultimate strain, %	0° 90°														
proportional limit, ksi	0° 90°														
initial modulus, 10 ⁶ psi	0° 90°														
Shear ultimate stress, ksi	0°-90°	19.5				17	.3								5.
	± 45°	65.7				63	.7								33
				5°F Dry					F Dry				160° [
		Avg	1	Max	М	in	Avg		Max	Min		Avg	Max	N	1in
Flexure ultimate stress, ksi	0°														
proportional limit, ksi initial modulus, 10 ⁶ psi	0° 0°														
Bearing ultimate stress, ksi stress at 4% elong., ksi	0° 0°														
Interlaminar Shear ultimate stress, ksi	0°														

 TABLE A1.111
 Summary of Mechanical Properties of Narmco 5505 Boron-Epoxy (0°-90° Crossply) (Tentative)

REFERENCES

- A1.2 S. J. Dastin and others, *Determination of Principal Properties of "E" Fiberglass High Temperature Epoxy Laminates for Aircraft,* Grumman Aircraft Engineering Corporation, DAA21-68-C-0404, August 1969.
- A1.3.4.1(a) ASTM D 638, "Tensile Properties of Plastics," *Annual Book of ASTM Standards*, ASTM, Philadelphia, PA.
- A1.3.4.1(b) P. D. Shockey and others, *Structural Airframe Application of Advanced Composite Materials*, General Dynamics, IIT Research Institute, Texaco Experiment, AFML-TR-69-01, **IV**, AF 33(615)-5257, October 1969.
- A1.3.4.2 ASTM D 695, "Compressive Properties of Rigid Plastics," *Annual Book of ASTM Standards*, ASTM, Philadelphia, PA.
- A1.3.4.3 K. H. Boller, A Method to Measure Intralaminar Shear Properties of Composite Laminates, Forest Products Laboratory, AFML-TR-69-311, March 1970.
- A1.3.4.4 ASTM D 2733-68T, "Interlaminar Shear Strength of Structural Reinforced Plastics at Elevated Temperatures," *Annual Book of ASTM Standards*, ASTM, Philadelphia, PA (canceled January 15, 1986 and replaced by ASTM D 3846).
- A1.3.4.5 ASTM D 790-70, "Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials," *1971 Annual Book of ASTM Standards*, ASTM, Philadelphia, PA, 1971.
- A1.3.4.6 ASTM D 953, "Bearing Strength of Plastics," *Annual Book of ASTM Standards*, ASTM, Philadelphia, PA.
- A1.4.5 G. C. Grimes and G. J. Overby, *Boron Fiber Reinforced/Polymer Matrix Composites Material Properties*, Southwest Research Institute, January 1970.

INDEX

|--|

Abbreviations	Ch 1- 22, 23, 28
Acronyms Ambient	Ch 1- 30
Desiring	
Bearing Braiding	Ch 1-19, 23, 30, 35, 42 Ch 1-22, 34, 35, 36, 38, 41, 43
Compression	Ch 1- 7, 22, 23, 25, 30, 34, 38, 43, 44
Data Definitions	
Dry	
Fiber Ch 1- 2, 3, 7, 10, 12, 16, 17, 18, 19, 20, 21, 22 45, 46, 47, 48, 50, 51, 52, 53	2, 25, 28, 32, 34, 35, 37, 39, 40, 41, 43, 44,
Glass transition temperature	Ch 1- 26, 46, 47
Joint	Ch 1- 1, 2, 18, 31, 38
Lamina	Ch 1- 2, 21, 22, 28, 29, 30, 40, 43, 53
Laminate Ch 1-2, 10, 17, 20, 21, 22, 25, 28, 29, 31, 3	
Laminate orientation code	
Matrix Ch 1- 2, 7, 12, 16, 17, 18, 19, 20, 2 Matrix class	
Moisture content	Ch 1- 52
Normalization	Ch 1- 46
Notched laminates	Ch 1- 12, 16, 17, 18, 19
Processing	Ch 1- 34, 44, 46, 47, 48, 49
Symbols	Ch 1- 22, 23, 27, 28
Terminology	
Test Method	Ch 1- 41, 49, 50
Units	
Conversion	Ch 1- 32, 33, 34, 50

PAGE

Material Property Data

Bismaleimide AS4/5250-3 unidirectional tape	
Astroquartz II/F650 8-harness satin weave fabric	
IM7 6k/5250-4 RTM 4-harness satin weave fabric	
T-300 3k/F650 unidirectional tape	
T-300 3k/F650 8-harness satin weave fabric	
T-300 3k/F652 8-harness satin weave fabric	
T-650-35 3k/5250-4 plain weave fabric	
T650-35 3k/5250-4 8-harness satin weave	
Carbon	

AS4 12k/938 unidirectional tape	
AS4 12k/997 unidirectional tape	
AS4 12k/3502 unidirectional tape	
AS4 12k/E7K8 unidirectional tape	
AS4 3k/3501-6 plain weave fabric	
AS4 3k/3501-6S 5-harness satin weave fabric	
AS4 3k/3501-6 5-harness satin weave fabric	
AS4 3k/3501-6 5-harness satin weave fabric	
AS4/3501-6 (bleed) unidirectional tape	
AS4/3501-6 (no bleed) unidirectional tape	
AS4 3k/E7K8 plain weave fabric	
AS4 6k/3502-6S 5-harness satin weave fabric	
AS4 6k/PR500 5-harness satin weave fabric	
AS4/5250-3 unidirectional tape	
Celion 12k/938 unidirectional tape	
Celion 12k/E7K8 unidirectional tape	
Celion 3000/E7K8 plain weave fabric	
Celion 3000/F670 8-harness satin weave fabric	
HITEX 33 6k/E7K8 plain weave fabric	
HITEX 33 6k/E7K8 unidirectional tape	
IM6 12k/APC-2 unidirectional tape	
IM6 3501-6 unidirectional tape	
IM7 6k/5250-4 RTM 4-harness satin weave fabric	
IM7 6k/PR500 4-harness satin weave fabric	
IM7 12k/8551-7A unidirectional tape	
IM7 12k/8552 unidirectional tape	
IM7 12k/977-2 unidirectional tape	
IM7 12k/PR381 unidirectional tape	
MEEL CL/OF 4. 2 unidirectional tana	4.045
M55J 6k/954-3 unidirectional tape	
T-300 15k/976 unidirectional tape	1-150
T-300 3k/934 plain weave fabric	
T-300 3k/977-2 8-harness satin weave fabric	
T-300 3k/977-2 plain weave fabric	
T-300 3k/EA9396 8-harness satin weave fabric	
1-200 JN/LAJJJU 0-11a111635 Saliit Weave Tabito	

T-300 3k/F650 8-harness satin weave fabric4T-300 3k/F650 unidirectional tape4T-300 3k/F652 8-harness satin weave fabric4T-500 12k/976 unidirectional tape4T-650-35 3k/5250-4 plain weave fabric4T650-35 3k/5250-4 8-harness satin weave4T650-35 3k/976 8-harness satin weave fabric4T650-35 3k/976 plain weave fabric4T650-35 3k/976 plain weave fabric4T650-35 12k/976 unidirectional tape4T700S 12k/3900-2 plain weave fabric4T800HB 12k/3900-2 unidirectional tape4	4-265 4-275 4-1 4-292 4-292 4-292 4-236 4-256 4-227 4-244
Cyanate Ester M55J 6k/954-3 unidirectional tape	4-315
Epoxy 7781G 816/PR381 plain weave fabric 7781G/EA 9396 8-harness satin weave fabric	
AS4 12k/938 unidirectional tape	4-215 . 4-63 . 4-15 4-164 4-173 4-129 4-129 4-138 4-105
AS4/3501-6 (no bleed) unidirectional tape	4-120 4-144
Celion 12k/938 unidirectional tape Celion 12k/E7K8 unidirectional tape Celion 3000/E7K8 plain weave fabric	. 4-24
HITEX 33 6k/E7K8 plain weave fabric HITEX 33 6k/E7K8 unidirectional tape	
IM6 3501-6 unidirectional tape 4 IM7 12k/8551-7A unidirectional tape 4 IM7 12k/8552 unidirectional tape 4 IM7 12k/977-2 unidirectional tape 4 IM7 12k/PR381 unidirectional tape 4 IM7 6k/PR500 4-harness satin weave fabric 4	4-163 4-181 4-181 4-236
S2-449 17k/SP 381 unidirectional tape S2-449 43k/SP381 unidirectional tape	
T-300 15k/976 unidirectional tape T-300 3k/934 plain weave fabric T-300 3k/977-2 8-harness satin weave fabric T-300 3k/977-2 plain weave fabric T-300 3k/EA9396 8-harness satin weave fabric T-500 12k/976 unidirectional tape	. 4-41 4-181 4-181 4-205

MIL-HDBK-17-2F

T650-35 3k/976 8-harness satin weave fabric	4-236
T650-35 3k/976 plain weave fabric	4-256
T650-35 12k/976 unidirectional tape	
T700S 12k/3900-2 plain weave fabric	
T800HB 12k/3900-2 unidirectional tape	4-250
Glass	
7781G 816/PR381 plain weave fabric	6-29
7781G/EA 9396 8-harness satin weave fabric	6-35
S2-449 43k/SP381 unidirectional tape	6-1
S2-449 17k/SP 381 unidirectional tape	6-15
PEEK	
IM6 12k/APC-2 unidirectional tape	4-303
Polyimide	
Celion 3000/F670 8-harness satin weave fabric	
Quartz	
Astroquartz II/F650 8-harness satin weave fabric	10-2

CONCLUDING MATERIAL

Custodians: Army - MR Navy - AS Air Force - 11 Preparing activity: Army - MR

(Project CMPS-0172)

Review activities: Army - AR, AT, AV, MI Navy - SH Air Force - 13 DLA-IS

STANDARDIZATION DOCUMENT IMPROVEMENT PROPOSAL

INSTRUCTIONS

1. The preparing activity must complete blocks 1, 2, 3, and 8. In block 1, both the document number and revision letter must be given.

2. The submitter of this form must complete blocks 4, 5, 6, and 7.

2. The preparing activity must provide a reply within 30 days from receipt of the form.

NOTE: This form may not be used to request copies of documents, nor to request waivers, or clarification of requirements on current contracts. Comments submitted on this form do not constitute or imply authorization to waive any portion of the referenced document(s) or to amend contractual requirements.

I RECOMMEND A CHANGE:	1. DOCUMENT NUMBER MIL-HDBK-17-2F	2. DOCUMENT DATE (YYYYMMDD) 20020617
-----------------------	--------------------------------------	--------------------------------------

3. DOCUMENT TITLE

COMPOSITE MATERIALS HANDBOOK - VOLUME 2, Polymer Matrix Composites, Materials Properties

4. NATURE OF CHANGE (Identify paragraph number and include proposed rewrite, if possible. Attach extra sheets as needed)

5. REASON FOR RECOMMENDATION

6. SUBMITTER

a. NAME (Last, First, Middle Initial)	b. ORGANIZATION						
c. ADDRESS (Include Zip Code)	d. TELEPHONE (Include Area Code) (1) Commercil (2) DSN (If applicable)	7. DATE SUBMITTED (YYYYMMDD)					
8. PREPARING ACTIVITY							
a. NAME	b. TELEPHONE (Including A	Area Code)					
US Army Research Laboratory	(1) Commercial	(2) DSN					
Weapons & Materials Research Directorate	(410) 306-0725	458-0725					
C. ADDRESS (Include Zip Code) IF YOU DO NOT RECEIVE A REPLY WITHIN 45 DAYS, CONTACT							
ARL/WMRD	Defense Standardization Program Office (DLSC-LM)						
ATTN: AMSRL-WM-MA 8725 John J. Kingman Road, Suite 2533, Fort Belvoir, VA 22060-6221							
Aberdeen Proving Ground, MD 21005-5069	Telephone (703) 767-6888 DSN 427-6888						
DD Form 1426 FEB 1000 (EG) Pravious adition is absolute WHS/DIOP Feb 00							

DD Form 1426, FEB 1999 (EG)

Previous edition is obsolete

WHS/DIOR, Feb 99